Author: Knight, E.W.
Paper Title Page
WEPAB163 An X-Band Ultra-High Gradient Photoinjector 2986
 
  • S.V. Kuzikov, S.P. Antipov, P.V. Avrakhov, E. Dosov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • G. Ha, C.-J. Jing, W. Liu, P. Piot, J.G. Power, D.S. Scott, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu
    MIT/PSFC, Cambridge, Massachusetts, USA
  • X. Lu
    SLAC, Menlo Park, California, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
  • E.E. Wisniewski
    IIT, Chicago, Illinois, USA
 
  Funding: This work was supported by DoE SBIR grant # DE-SC0018709.
High brightness beams appealing for XFELs and UEM essentially imply a high current and a low emittance. To obtain such beams we propose to raise the accelerating voltage in the gun mitigating repealing Coulomb forces. An ultra-high gradient is achieved utilizing a short-pulse technology. We have designed a room temperature X-band 1,5 cell gun that is able to inject 4 MeV, 100 pC bunches with as low as 0.15 mcm normalized transverse emittance. The gun is operated with as high gradients as 400 MV/m and fed by 200 MW, 10 ns RF pulses generated with Argonne Wakefield Accelerator (AWA) power extractor. We report results of low RF power tests, laser alignment test results, and successful gun conditioning results carried out at nominal RF power.
 
poster icon Poster WEPAB163 [5.427 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB163  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB164 Electrodeless Diamond Beam Halo Monitor 2990
 
  • S.V. Kuzikov, S.P. Antipov, P.V. Avrakhov, E. Dosov, E.W. Knight, Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
  • J.G. Power, J. Shao
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by DoE SBIR grant # DE-SC0019642.
Beam halo measurement is important for novel x-ray free-electron lasers which have remarkably high repetition rate and average power. We propose diamond as a radiation hard material that can be used to measure the flux of passing particles based on a particle-induced conductivity effect. Our diamond electrodeless monitor is based on a microwave measurement of the change in the resonator coupling and eigenfrequency. For measurements, we put a sensitive diamond sample in a resonator that intercepts the halo. By measuring the change in RF properties of the resonator, one can infer the beam halo parameters scanning across the beam to map its transverse distribution. In recent experiments we used a Vertical Beam Test Stand (VBS), delivered DC electron beam of the 20-200 keV energy with the current up to 50 µA, to characterize several diamond samples. We have designed and fabricated a scanning diamond monitor, based on an X-band resonator, which was tested at Argonne Wakefield Accelerator (AWA) with a multi-MeV electron beam.
 
poster icon Poster WEPAB164 [5.138 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB164  
About • paper received ※ 14 May 2021       paper accepted ※ 07 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)