Author: Kamiya, J.
Paper Title Page
WEPAB245 A Possible Modification of Ceramic Chambers in the Injection Area at the RCS in J-PARC 3205
 
  • Y. Shobuda, K. Horino, J. Kamiya, K. Kotoku, T. Takayanagi, T. Ueno, T. Yanagibashi
    JAEA/J-PARC, Tokai-mura, Japan
 
  The J-PARC RCS is composed of ceramic chambers covered over copper stripes to suppress the eddy current on the chamber. The inductance, comprising the copper stripes and flanges, in combination with the capacitors makes an LCR electric circuit with the chamber and can cause field modulation in the chamber. Though most chambers are not harmful at the RCS, the chambers at the injection area excite beam losses, because a trapezoid field pattern is excited to accumulate LINAC beam during the injection period. In this report, we consider several types of ceramic chambers to suppress the field modulation. One type is a ceramic chamber covered over copper stripes in parallel with damping resistors. Another is that covered over spiral copper stripes with only capacitors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB245  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB337 Some Methods of Making Titanium Vacuum Chamber Act as Getter Pump for UHV/XHV 3471
 
  • J. Kamiya, T. Takano, H. Yuza
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Wada
    Tokyo Electronics Co. Ltd., Kokubunji, Tokyo, Japan
 
  Funding: JSPS KAKENHI Grant Number JP18K11925
The non-evaporable getter (NEG) coating has been developed in CERN to make a beam pipe act as a distributed vacuum pump by coating the getter materials with the ability to adsorb/absorb gas molecules on the beam pipe surface. The NEG coating materials used in the LHC are alloys of titanium, zirconium, and vanadium. In high-power beam accelerators, titanium has been used as the beam pipe chamber material due to its low radio activation characteristics. The ordinal titanium surface has no getter function because it is covered with a titanium oxide film. The new technique, which removes the titanium-oxide surface by some methods, such as baking or sputtering, has been investigated. The dependence of the surface oxide film and the getter characteristics on the baking temperature have been measured. Also, by sputtering the inner surface of the titanium chamber, clear evidence that shows the chamber acts as a vacuum pump has been obtained. Furthermore, the NEG coating on the pure titanium surface can suppress the rapid decrease of the sticking probability by the repeated air purge and reactivation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB337  
About • paper received ※ 14 May 2021       paper accepted ※ 25 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)