Paper | Title | Page |
---|---|---|
MOPAB418 | Tracking and LET Measurements with the MiniPIX-TimePIX Detector for 60 MeV Clinical Protons | 1260 |
|
||
Funding: EU FP7 grant agreement 215080, H2020 Marie Sklodowska-Curie grant agreement No 675265, OMA - Optimization of Medical Accelerators and the Cockcroft Institute core grant STGA00076-01. Recent advancements in accelerator technology have led the rapid emergence of particle therapy facilities worldwide, affirming the need for enhanced characterisation methods of radiation fields and radiobiological effects. The Clatterbridge Cancer Centre, UK operates a 60 MeV proton beam to treat ocular cancers and facilitates studies into proton induced radiobiological responses. Accordingly, an indicator of radiation quality is the linear energy transfer (LET), a challenging physical quantity to measure. The MiniPIX-Timepix is a miniaturised, hybrid semiconductor pixel detector with a Timepix ASIC, enabling wide-range measurements of the deposited energy, position and direction of individual charged particles. High resolution spectrometric tracking and simultaneous energy measurements of single particles enable the beam profile, time, spatial dose mapping and LET (0.1 to >100 keV/µm) to be resolved. Measurements were performed to determine the LET spectra in silicon, at different positions along the Bragg Peak (BP). We discuss the experimental setup, preliminary results and applicability of the MiniPIX for clinical environments. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB418 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 23 July 2021 issue date ※ 25 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |