Paper | Title | Page |
---|---|---|
TUPAB181 | Demonstration of Electron Cooling using a Pulsed Beam from an Electrostatic Electron Cooler | 1827 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. Electron cooling continues to be an invaluable technique to reduce and maintain the emittance in hadron storage rings in cases where stochastic cooling is inefficient and radiative cooling is negligible. Extending the energy range of electron coolers beyond what is feasible with the conventional, electrostatic approach necessitates the use of RF fields for acceleration and, thus, a bunched electron beam. To experimentally investigate how the relative time structure of the two beams affects the cooling properties, we have set up a pulsed-beam cooling device by adding a synchronized pulsing circuit to the conventional electron source of the CSRm cooler at Institute of Modern Physics *. We show the effect of the electron bunch length and longitudinal ion focusing strength on the temporal evolution of the longitudinal and transverse ion beam profile and demonstrate the detrimental effect of timing jitter as predicted by theory and simulations. Compared to actual RF-based coolers, the simplicity and flexibility of our setup will facilitate further investigations of specific aspects of bunched cooling such as synchro-betatron coupling and phase dithering. * M. W. Bruker et al., Phys. Rev. Accel. Beams 24, 012801 (2021) |
||
Poster TUPAB181 [3.699 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB181 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 15 June 2021 issue date ※ 21 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB348 | Magnetron R&D for High Efficiency CW RF Sources for Industrial Accelerators | 2318 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and DOE OS/HEP Accelerator Stewardship award 2019-2021. The scheme of using high-efficiency magnetrons to drive radiofrequency accelerators has been demonstrated at 2450 MHz in CW mode *. Magnetron test stands at JLab and GA have been set up to further test the noise figure and the locking speed of the injection phase-lock method. For higher power applications, power combining experiments using a TM010 cavity-type combiner and a magic tee for the binary combiner while using a single clean injection signal has been carried out at 2450 MHz. The frequency pulling effect between the magnetron and a low-Q cavity has been shown to enhance the frequency locking bandwidth compared to the injection phase-lock alone. The principle has been studied by the equivalent circuit simulation, analytical model, and finally confirmed experimentally on the magnetrons. Due to the pandemic delay in 2020, the equivalent high power tests using a 75kW, 915MHz industrial magnetron will be done in 2021 and will be reported in a future paper. * H. Wang, et al, Magnetron R&Ds for High-Efficiency CW RF Sources of Particle Accelerators, WEXXPLS1, proceedings of IPAC 2019, Melbourne, Australia, May 19 -24, 2019. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB348 | |
About • | paper received ※ 22 May 2021 paper accepted ※ 21 June 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |