Author: Honda, T.
Paper Title Page
MOPAB091 Injection Section Upgrading with the Septum-Magnet Replacement in KEK-PF Ring 342
 
  • C. Mitsuda, K. Harada, N. Higashi, T. Honda, Y. Kobayashi, H. Miyauchi, S. Nagahashi, N. Nakamura, T. Nogami, T. Obina, M. Tadano, R. Takai, H. Takaki, Y. Tanimoto, T. Uchiyama, A. Ueda
    KEK, Ibaraki, Japan
 
  In 2015, the water leakage happened at the cooling pipe of the in-vacuum septum magnet installed into the injection point. Because the maintenance of the leakage needed the total replacement of the magnet, the water circulation was stopped permanently, and accordingly, the light absorber was installed upstream in the storage ring to prevent the synchrotron light of the bending magnet from coming to the septum wall. This treatment temporally worked well, but the beam injection efficiency was decreased to about 30% due to the physical aperture narrowed by the absorber. With the desired replacement of septum magnet to maintainable out-vacuum type, the injection section upgrading was simultaneously planned to recover and improve the injection efficiency. In this upgrade, the injection beam is closed to the stored beam more than before by adapting the thinner septum structure as a way to improve the injection efficiency. And some new ideas are introduced in the part of monitor and beam duct, for example, realtime beam monitor, thinner Inconel duct. The detailed design of the upgraded injection section and technical points will be reviewed in this conference.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB091  
About • paper received ※ 19 May 2021       paper accepted ※ 26 May 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB093 Operational Status of Photon Factory Light Sources 350
 
  • T. Honda, Y. Kobayashi, C. Mitsuda, S. Nagahashi, R. Takai, H. Takaki
    KEK, Ibaraki, Japan
 
  One of the recent topics of Photon Factory light sources, PF-ring and PF-AR, is a construction of a GeV-class beamline for testing detectors at the PF-AR. The bremsstrahlung photons generated by a thin carbon wire are brought to a copper target to generate e+e pairs. Sufficient count rates can be expected when the thin wire touching halo of the stored beam, and the test beamline can be used without disturbing the synchrotron radiation experiments. In addition to the usual 6.5-GeV operation, a low-energy operation at 5-GeV was started recently at PF-AR to secure operation time by saving electricity costs. At the PF-ring, the injection section has been upgraded with the septum-magnet replacement. By the top-up injection and improved bunch feedback, the hybrid-fill mode operation has become convenient for both single-bunch users and multi-bunch users, and about 30% or 40% of the user time is scheduled as the hybrid-fill mode now.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB093  
About • paper received ※ 21 May 2021       paper accepted ※ 25 May 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)