Author: Hanlet, P.M.
Paper Title Page
THPAB337 Resonance Control System for the PIP-II IT HWR Cryomodule 4446
 
  • P. Varghese, B.E. Chase, P.M. Hanlet, H. Maniar, D.J. Nicklaus, S. Sankar Raman
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle, S. Paiagua, C. Serrano
    LBNL, Berkeley, California, USA
 
  The HWR (half-wave-resonator) cryomodule is the first one in the superconducting section of the PIP-II LINAC project at Fermilab. PIP-II IT is a test facility for the project where the injector, warm front-end, and the first two superconducting cryomodules are being tested. The HWR cryomodule comprises 8 cavities operating at a frequency of 162.5 MHz and accelerating beam up to 10 MeV. Resonance control of the cavities is performed with a pneumatically operated slow tuner which compresses the cavity at the beam ports. Helium gas pressure in a bellows mounted to an end wall of the cavity is controlled by two solenoid valves, one on the pressure side and one on the vacuum side. The resonant frequency of the cavity can be controlled in one of two modes. A pressure feedback control loop can hold the cavity tuner pressure at a fixed value for the desired resonant frequency. Alternately, the feedback loop can regulate the cavity tuner pressure to bring the RF detuning error to zero. The resonance controller is integrated into the LLRF control system for the cryomodule. The control system design and performance of the resonance control system are described in this paper.  
poster icon Poster THPAB337 [4.426 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB337  
About • paper received ※ 12 May 2021       paper accepted ※ 26 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB338 Performance of the LLRF System for the Fermilab PIP-II Injector Test 4450
 
  • P. Varghese, B.E. Chase, P.M. Hanlet, H. Maniar, D.J. Nicklaus
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle, C. Serrano
    LBNL, Berkeley, California, USA
 
  PIP-II IT is a test facility for the PIP-II project where the injector, warm front-end, and the first two superconducting cryomodules are being tested. The 8-cavity half-wave-resonator (HWR) cryomodule operating at 162.5 MHz is followed by the 8-cavity single-spoke resonator(SSR1) cryomodule operating at 325 MHz. The LLRF systems for both cryomodules are based on a common SOC FPGA-based hardware platform. The resonance control systems for the two cryomodules are quite different, the first being a pneumatic system based on helium pressure and the latter a piezo/stepper motor type control. The data acquisition and control system can support both CW and Pulsed mode operations. Beam loading compensation is available which can be used for both manual/automatic control in the LLRF system. The user interfaces include EPICS, Labview, and ACNET. Testing of the RF system has progressed to the point of being ready for a 2 mA beam to be accelerated to 25 MeV. The design and performance of the field control and resonance control system operation with beam are presented in this paper.  
poster icon Poster THPAB338 [5.482 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB338  
About • paper received ※ 13 May 2021       paper accepted ※ 27 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)