Author: Gibson, S.M.
Paper Title Page
WEPAB185 Target Bypass Beam Optics for Future High Intensity Fixed Target Experiments in the CERN North Area 3046
 
  • G.L. D’Alessandro, D. Banerjee, J. Bernhard, M. Brugger, N. Doble, L. Gatignon, A. Gerbershagen, B. Rae, F.M. Velotti
    CERN, Meyrin, Switzerland
  • S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
 
  Several of the proposed experiments for operation at the K12 beam line would profit from significant beam intensity increase. Among those, there is the KLEVER experiment that would require an intensity of 2x1013 protons per 4.8 s long spill. The main goal of the experiment is to measure BR(KL->pi0 nu nu) to test the Standard Model structure by itself, and in combination with results from NA62 for BR(K±>pi+ nu nu). NA62 could also profit from higher intensities, and could be run in a new configuration called NA62HI(gher intensity). In the current configuration the beam is transported from the SPS to the TT24 beamline. This beamline leads to the T4 target that attenuates the beam for P42. After T4 the beam is directed into the P42 beamline before impinging on the T10 target and creating the particles necessary for the experiment. Those are finally transported to the detector via K12. This paper presents the idea of partially bypassing T4 and changing the P42 beamline configuration in order to have a sufficiently small beam size at the T10 target for both KLEVER and NA62-HI. Optics studies are developed in MADX and the AppLE.py, software developed at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB185  
About • paper received ※ 17 May 2021       paper accepted ※ 01 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB186 Studies for the K12 High-Intensity Kaon Beam at CERN 3049
 
  • G.L. D’Alessandro, D. Banerjee, J. Bernhard, M. Brugger, N. Doble, L. Gatignon, A. Gerbershagen, R. Marchevski, B. Rae, S. Schuchmann, F.W. Stummer, M.W.U. Van Dijk
    CERN, Geneva, Switzerland
  • S.T. Boogert, S.M. Gibson, L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
 
  The NA62 experiment is a fixed target experiment located in the North Area of CERN and has as main goal the measurement of the branching ratio of the rare decay K±>pi+vv. The primary proton beam from the SPS accelerator interacts with the T10 beryllium target and the generated 75 GeV/c secondary particles, containing about 6% of positive kaons, are transported by the K12 beamline to the NA62 experiment. Studies in this paper present detailed simulations of the K12 beamline developed in both FLUKA and BDSIM codes, which reproduce the current configuration of K12 for the NA62 experiment. The beam optics parameters of K12 are studied in BDSIM and compared to MADX optics and tracking calculations. The models in FLUKA and BDSIM are used for beam studies and muon production at various locations along the beamline, and the parameters obtained from simulations are benchmarked against data recorded by the experiment. The impact of the Cherenkov kaon tagging detector (CEDAR) on the beam quality is calculated for two different gas compositions in view of a possible upgrade of the detector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB186  
About • paper received ※ 17 May 2021       paper accepted ※ 01 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB214 Recent BDSIM Related Developments and Modeling of Accelerators 4208
 
  • L.J. Nevay, A. Abramov, S.E. Alden, S.T. Boogert, G. D’Alessandro, S.M. Gibson, H. Lefebvre, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
  • A. Abramov, G. D’Alessandro, C. Hernalsteens
    CERN, Meyrin, Switzerland
  • E. Gnacadja, C. Hernalsteens, E. Ramoisiaux, R. Tesse
    ULB, Bruxelles, Belgium
  • S. Liu
    DESY, Hamburg, Germany
 
  Funding: This work is supported by the STFC (UK) grants: JAI ST/P00203X/1, HL-LHC-UK1 ST/N001583/1, HL-LHC-UK2 ST/T001925/1, and ST/P003028/1.
Beam Delivery Simulation (BDSIM) is a program based on Geant4 that creates 3D radiation transport models of accelerators from a simple optical description in a vastly reduced time frame with great flexibility. It also uses ROOT and CLHEP to create a single simulation model that can accurately track all particle species in an accelerator to predict and understand beam losses, secondary radiation, dosimetric quantities and their origin. BDSIM provides a library of scalable generic geometry for a variety of applications. Our Python package, Pyg4ometry, allows rapid preparation and conversion of geometries for BDSIM and other radiation transport simulations including FLUKA. We present a broad overview of BDSIM developments related to a variety of experiments at several facilities. We present a model of the forward experiment FASER at the LHC, CERN where the geometry is composited from multiple sources using Pyg4ometry. The analysis of particle history is presented as well as production mechanisms. We also present the application of recently introduced laser interactions in Geant4 to Compton photons from a laserwire diagnostic at the ATF2.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB214  
About • paper received ※ 20 May 2021       paper accepted ※ 19 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB278 The HL-LHC Beam Gas Vertex Monitor - Simulations for Design Optimisation and Performance Study 2120
 
  • H. Guerin, O.R. Jones, R. Kieffer, B. Kolbinger, T. Lefèvre, B. Salvant, J.W. Storey, R. Veness, C. Zamantzas
    CERN, Meyrin, Switzerland
  • S.M. Gibson, H. Guerin
    Royal Holloway, University of London, Surrey, United Kingdom
 
  The Beam Gas Vertex (BGV) instrument is a non-invasive transverse beam profile monitor being designed as part of the High Luminosity Upgrade of the LHC (HL-LHC) at CERN. Its aim is to continuously measure bunch-by-bunch beam profiles, independent of beam intensity, throughout the LHC cycle. The primary components of the BGV monitor are a gas target and a forward tracking detector. Secondary particles emerging from inelastic beam-gas interactions are detected by the tracker. The beam profile is then inferred from the spatial distribution of reconstructed vertices of said interactions. Based on insights and conclusions acquired by a demonstrator device that was operated in the LHC during Run 2, a new design is being developed to fulfill the HL-LHC specifications. This contribution describes the status of the simulation studies being performed to evaluate the impact of design parameters on the instrument’s performance and identify gas target and tracker requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB278  
About • paper received ※ 18 May 2021       paper accepted ※ 21 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)