Author: Gibaru, Q.
Paper Title Page
THPAB210 Extrapolated Range for Low Energy Electrons (< 1 keV) 4201
 
  • C. Inguimbert, M.B. Belhaj, Q. Gibaru
    ONERA, Toulouse, France
  • Q. Gibaru, D. Lambert, M. Raine
    CEA, Arpajon, France
  • Q. Gibaru
    CNES, PARIS, France
 
  Funding: ONERA- DPHY, 2 avenue E. Belin, 31055 Toulouse, France CEA, DAM, DIF, 91297 Arpajon, France CNES, 18 av. E. Belin, 31055 Toulouse, France
The Secondary Electron Emission (SEE) process plays an important role in the performance of various devices. Mitigating the multipactor phenomenon that may occur in radio-frequency components is a concern in many fields such as space technologies or electron microscopy. SEE is also a concern in the accelerator physics community, where the beam lines stability can strongly be affected by this phenomenon*,**. In that scope, the escaped depth and thus the range of emitted electrons is of great interest. Our goal, by means of simulations is to provide a better knowledge of SEE. We have developed a Monte Carlo electron transport code for low energy electrons [~eV, ~10keV], that is part of the Dec. 2020 release of GEANT4***. It has been used to study the practical range of low energy electrons. Our goal is to formulate, below ~10 keV, an analytic range vs. energy expression, and to relate it to fundamental physcial parameters such as the mean free paths of electrons in matter. The goal is to provide simple practical extrapolated range formula that can help to understand SEE phenomenon.
* M. Mostajeran et al. J. of Instr. 5 (2010)
** C. Y. Vallgren et al. Phys. Rev. Accel. Beam 14 (2011)
*** Q. Gibaru et al. Nuc. Inst. And Met. 487 (2021)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB210  
About • paper received ※ 10 May 2021       paper accepted ※ 23 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB211 Monte Carlo Simulation of 3D Surface Morphologies for Secondary Electron Emission Reduction 4204
 
  • Q. Gibaru, M.B. Belhaj, C. Inguimbert
    ONERA, Toulouse, France
  • Q. Gibaru, D. Lambert, M. Raine
    CEA, Arpajon, France
  • Q. Gibaru
    CNES, PARIS, France
 
  Low energy electrons of few tens of eV may cause Multipactor breakdowns in waveguides driven by the Secondary Electron Emission Yield (SEY) of the walls. This risk is lowered by using low emissive surfaces and this topic has been studied experimentally and with numerical simulations. The dependence of the SEY on surface properties is well known*. Surface morphology has been widely used to reduce the SEY by forming roughness patterns on the surface**. All patterns do not have the same efficiency so their analysis in terms of SEY is relevant. Monte-Carlo simulation codes can be used to study the processes behind the SEY. The MicroElec module of GEANT4 has recently been extended with more materials and processes and validated with experimental data for SEY calculations**. In this work, simulation results are shown for a bulk sample capped with different roughness patterns. The effects of the shape parameters on the SEY are studied for typical dimensions between 20 µm and 100 µm. The results are checked with experimental SEY measurements on samples with similar roughness patterns.
*:T Gineste et al, Appl Surf Sci 359 (2015) 398-404
**:J Pierron et al, J Appl Phys 124 (2018) 095101
***:Q. Gibaru, C. Inguimbert, P. Caron, M. Raine, D. Lambert, J. Puech, NIM B. 487 (2021) 66-77
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB211  
About • paper received ※ 12 May 2021       paper accepted ※ 23 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)