Paper | Title | Page |
---|---|---|
TUPAB041 | Detector Solenoid Compensation for the Electron-Ion Collider | 1439 |
|
||
Funding: Jefferson Science Associates, LLC Contract No. DE-AC05-06OR23177, Fermi Research Alliance, LLC Contract No. DE-AC02-07CH11359, and Brookhaven Science Associates, LLC Contract No. DE-SC0012704 The central detector in the present EIC design includes a 4 m long solenoid with an integrated strength of up to 12 Tm. The electron beam passes on-axis through the solenoid, but the hadron beam has an angle of 25 mrad. Thus the solenoid couples horizontal and vertical betatron motion in both electron and hadron storage rings, and causes a vertical closed orbit excursion in the hadron ring. The solenoid also couples the transverse and longitudinal motions of both beams, when crab cavities are also considered. In this paper, we present schemes for closed orbit correction and coupling compensation at the IP, including crabbing. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB041 | |
About • | paper received ※ 28 May 2021 paper accepted ※ 31 August 2021 issue date ※ 12 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB005 | Design Status Update of the Electron-Ion Collider | 2585 |
|
||
Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments. |
||
Poster WEPAB005 [2.095 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 22 June 2021 issue date ※ 16 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |