Author: Forck, P.
Paper Title Page
MOPAB279 Non-Invasive Beam Profile Monitoring for the HL-LHC Hollow Electron Lens 884
 
  • A. Salehilashkajani, N. Kumar, O. Sedláček, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • M. Ady, N.S. Chritin, N. Jens, O.R. Jones, R. Kersevan, T. Lefèvre, S. Mazzoni, G. Papazoglou, A. Rossi, G. Schneider, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, O. Sedláček, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1 and the STFC Cockcroft core grant No. ST/G008248/1.
A Hollow Electron Lens (HEL) is currently under development for the High-Luminosity upgrade of the Large Hadron Collider (HL-LHC). In this device, a hollow electron beam co-propagates with a central proton beam and provides active halo control in the LHC. To ensure the concentricity of the two beams, a non-invasive diagnostic instrument is currently being commissioned. This instrument is a compact version of an existing prototype that leverages beam induced fluorescence with supersonic gas curtain technology. This contribution includes the design features of this version of the monitor, recent progress, and future plans for tests at the Cockcroft Institute and the electron lens test stand at CERN.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB279  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB283 Simulations of Space-Charge and Guiding Fields Effects on the Performance of Gas Jet Profile Monitoring 898
 
  • O. Sedláček, N. Kumar, A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Mazzoni, O. Sedláček
    CERN, Geneva, Switzerland
 
  Gas jet based profile monitors inject a usually curtain shaped gas jet across a charged particle beam and exploit the results of the minimally invasive beam-gas interaction to provide information about the beam’s transversal profile. Such monitor will be installed as part of the High Luminosity LHC upgrade at CERN in the Hollow Electron Lens (HEL). The HEL represents a new collimation stage increasing the diffusion rate of halo particles by placing a high intensity hollow electron beam concentrically around the LHC beam. The gas jet monitor will use the fluorescence radiation resulting due to the beam-gas interaction to create an image of the profiles of both hollow electron and LHC beams However, the high beam space-charge and strong guiding magnetic field of the electron beam cause significant displacements of the excited molecules, as they are also ionized, and thus image distortions. This work presents preliminary simulation results showing expected fluorescence images of the hollow electron profile as affected by space-charge and guiding fields using simulation tools such as IPMsim. The influence of the estimated electron beam and gas jet curtain parameters are investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB283  
About • paper received ※ 18 May 2021       paper accepted ※ 28 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB315 Beam Diagnostics for Commissioning and Operation of the FAIR Proton Linac 972
 
  • T. Sieber, P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • J. Herranz, A. Vizcaino-de-Julian
    Proactive Research and Development, Sabadell, Spain
 
  For the planned antiproton experiments at FAIR a dedicated proton injector Linac is currently under construction. It will be connected via the old UNILAC transfer beamline to SIS18 and has a length of ~30 m. The Linac will accelerate protons up to a final energy of 68 MeV, at a pulse length of 35 µs and a maximum repetition rate of 4 Hz. It will operate at 325 MHz and consists of a new so called "Ladder" RFQ type, followed by a chain of CH-cavities, partially coupled by rf-coupling cells. We have worked out a diagnostics system, which allows detailed measurement and study of all beam parameters during commissioning and later during regular operation. The diagnostics devices will - in a first step - be installed on a diagnostics testbench for stepwise commissioning. We present the concepts for Linac and testbench with some special emphasis on energy measurements with spectrometer and SEM Grid profile measurements.  
poster icon Poster MOPAB315 [3.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB315  
About • paper received ※ 14 May 2021       paper accepted ※ 24 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)