Author: Dudnikov, V.G.
Paper Title Page
WEPAB327 Sheet Electron Probe for Beam Tomography 3437
 
  • V.G. Dudnikov, M.A. Cummings, G. Dudnikova
    Muons, Inc, Illinois, USA
 
  Funding: Work is funded by DOE SBIR grant DE-SC0021581
An electron beam probe has been successfully used for the determination of accelerated particle density distributions. However, the apparatus used for this diagnostic had a large size and complex design which limit the broad use of this diagnostic for tomography of accelerated bunches. We propose a new approach to electron beam tomography: we will generate a continuous sheet of electrons. As the ion beam bunches pass through the sheet, they cause distortions in the distribution of sheet electrons arriving at CCD device on the other side of the beam that is interpreted to give a continuous measurement of the beam profile. The apparatus to generate the sheet beam is a strip cathode, which, compared to the scanning electron beam probe, is smaller, has a simpler design and less expensive manufacturing, has better magnetic shielding, has higher sensitivity, higher resolution, has better accuracy of measurement and better time resolution. With this device, it is possible to develop almost ideal tomography diagnostics of bunches in linear accelerators and in circular accelerators and storage rings.
 
poster icon Poster WEPAB327 [0.640 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB327  
About • paper received ※ 19 May 2021       paper accepted ※ 15 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB328 Rapid Surface Microanalysis Using a Low Temperature Plasma 3440
 
  • V.G. Dudnikov, M.A. Cummings, R.P. Johnson
    Muons, Inc, Illinois, USA
 
  There is a need for rapid, high-resolution (micron or sub-micron) scanning of surfaces of special nuclear materials (SNM) and surrogate materials to locate and identify regions of abnormalities. One technique that is commonly used to analyze the composition of solid surfaces and thin films is secondary-ion mass spectrometry (SIMS). SIMS devices are very complex and expensive. We propose to develop simpler, less expensive surface analysis devices, based on glow-discharge optical emission spectroscopy (GOES) that can provide excellent spatial resolution. Ions from a plasma discharge sputtered atoms from the surface and the discharge electrons effectively excite and ionize the sputtered atoms. GOES uses the light emitted by the excited particles for quantitative analysis. In the GOES device, the ion flux is extracted from the gas-discharge plasma and focused to a micron size on the sample, providing very local sputtering and local elemental analysis. The radiation from the sputtered atoms is passed through an optical fiber to an optical spectrometer and recorded. To register the distribution of elements over the sample, the sample is scanned electro-mechanically.  
poster icon Poster WEPAB328 [0.385 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB328  
About • paper received ※ 19 May 2021       paper accepted ※ 29 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)