Paper | Title | Page |
---|---|---|
MOPAB254 | Measurement of Horizontal Beam Size Using Sextupole Magnets | 802 |
|
||
Funding: This work is supported by National Science Foundation award number DMR-1829070. The quadratic dependence of sextupole fields on position results in a beam-size-dependent kick on a beam traversing a sextupole magnet. A change in sextupole strength changes the closed orbit and the tune of the beam in a storage ring. Measuring both therefore allows conclusions about the beam size in the sextupole. Here we derive the pertinent formula and discuss the applicability to storage rings. In particular we investigate the measurement accuracy that can be achieved at the Cornell High Energy Synchrotron Source. The Cornell Electron-positron Storage Ring underwent a major upgrade in 2018 with the goal of reducing the emittance by a factor of four. A variety of beam size measurement methods have been developed to monitor the positron beam size, including visible synchrotron light and interferometry. We investigate the sensitivity of the sextupole method and compare to other measurement techniques. The design horizontal emittance of the 6-GeV positron beam is about 30 nm-rad with typical beam sizes of about 1 mm, setting the scale for the required accuracy in the beam-size measurement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB254 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 22 June 2021 issue date ※ 01 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB042 | Large Radial Shifts in the EIC Hadron Storage Ring | 1443 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider will collide hadrons in the Hadron Storage Ring (HSR) with ultra-relativistic electrons in the Electron Storage Ring. The HSR design trajectory includes a large radial shift over a large fraction of its circumference, in order to adjust the hadron path length to synchronize collisions over a broad range of hadron energies. The design trajectory goes on-axis through the magnets, crab cavities and other components in the six HSR Insertion Regions. This paper discusses the issues involved and reports on past and future beam experiments in the Relativistic Heavy Ion Collider, which will be upgraded to become the HSR. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 15 June 2021 issue date ※ 21 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB005 | Design Status Update of the Electron-Ion Collider | 2585 |
|
||
Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments. |
||
Poster WEPAB005 [2.095 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 22 June 2021 issue date ※ 16 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB007 | Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA | 3762 |
|
||
The Cornell-BNL ERL Test Accelerator (CBETA) developed several energy-saving measures: multi-turn energy recovery, low-loss superconducting radiofrequency (SRF) cavities, and permanent magnets. With green technology becoming imperative for new high-power accelerators, the lessons learned will be important for projects like the FCC-ee or new light sources, where spinoffs and lessons learned from CBETA are already considered for modern designs. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 05 July 2021 issue date ※ 12 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB009 | A Hard X-Ray Compton Source at CBETA | 3765 |
|
||
Inverse Compton scattering (ICS) holds the potential for future high flux, narrow bandwidth x-ray sources driven by high quality, high repetition rate electron beams. CBETA, the Cornell-BNL Energy recovery linac (ERL) Test Accelerator, is the world’s first superconducting radiofrequency multi-turn ERL, with a maximum energy of 150 MeV, capable of ICS production of x-rays above 400 keV. We present an update on the bypass design and anticipated parameters of a compact ICS source at CBETA. X-ray parameters from the CBETA ICS are compared to those of leading synchrotron radiation facilities, demonstrating that, above a few hundred keV, photon beams produced by ICS outperform those produced by undulators in term of flux and brilliance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB009 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 06 July 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |