Author: De Stefano, M.
Paper Title Page
MOPAB346 Broadband Frequency Electromagnetic Characterisation of Coating Materials 1076
 
  • A. Passarelli, C. Koral, M.R. Masullo
    INFN-Napoli, Napoli, Italy
  • A. Andreone
    Naples University Federico II, Napoli, Italy
  • M. De Stefano
    University of Naples, Naples, Italy
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  In the new generation of particle accelerators and storage rings, collective effects have to be carefully analyzed. In particular, the finite conductivity of the beam pipe walls is a major source of impedance and instabilities. A reliable electromagnetic (EM) characterisation of different coating materials is required up to hundreds of GHz due to very short bunches. We propose two different measurement techniques for an extended frequency characterization: (i) a THz time domain setup based on the signal transmission response of a tailored waveguide to infer the coating EM properties from 100 to 300 GHz or even further*.**. This technique has been tested both on NEG and amorphous Carbon films. (ii) a resonant method, based on dielectric cavities, to evaluate the surface resistance Rs of thin conducting samples at low (GHz) frequencies***. Due to its high sensitivity, Rs values can be obtained for very thin (nanometric) coatings or for copper samples with a laser treated surface, since they have an expected conductivity very close to bulk copper.
*A. Passarelli et al., Phys. Rev. Accel. Beams, v.21, p.103101, 2018
**A. Passarelli et al., Cond. Matter, v.5, p.9, 2020
***A. Andreone et al., Applied Physics Letters, v.91, n.7, p.072512, 2007
 
poster icon Poster MOPAB346 [2.613 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB346  
About • paper received ※ 18 May 2021       paper accepted ※ 09 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)