Author: Chiggiato, P.
Paper Title Page
WEPAB338 Amorphous Carbon Coating in SPS 3475
 
  • W. Vollenberg, P. Chiggiato, P. Costa Pinto, P. Cruikshank, H. Moreno, C. Pasquino, J. Perez Espinos, M. Taborelli
    CERN, Geneva, Switzerland
 
  Within the LHC Injector Upgrade (LIU) project, the Super Proton Synchrotron (SPS) needs to be upgraded to inject into the LHC higher intensity and brighter 25-ns bunch spaced beams. To mitigate the Electron Multipacting (E.M.) phenomenon, a well-known limiting factor for high-intensity positively charged beams, CERN developed carbon coatings with a low Secondary Electron Yield (SEY). During the 2016 & 2017 year-end technical stops, such coatings were deposited on the inner wall of the vacuum chambers of some SPS quadrupole and dipole magnets by a dedicated in-situ setup. A much larger scale deployment was implemented during the Long Shutdown 2 (2019-2020) to coat all beam pipes of focussing quadrupoles (QF) and their adjacent short straight sections. In this contribution, we remind the motivation of the project, and present the results and the quality control of the carbon coating campaign during the latter phase of implementation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB338  
About • paper received ※ 19 May 2021       paper accepted ※ 16 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB339 Beam-Induced Surface Modification of the LHC Beam Screens: The Reason for the High Heat Load in Some LHC Arcs? 3479
 
  • V. Petit, P. Chiggiato, M. Himmerlich, G. Iadarola, H. Neupert, M. Taborelli, D.A. Zanin
    CERN, Geneva, Switzerland
 
  All over Run 2, the LHC beam-induced heat load exhibited a wide scattering along the ring. Studies ascribed the heat source to electron cloud build-up, indicating an unexpectedly high Secondary Electron Yield (SEY) of the beam screen surface in some LHC regions. During the Long Shutdown 2, the beam screens of a low and a high heat load dipole were extracted. Their inner copper surface was analysed in the laboratory to compare their SEY and surface composition. While findings on the low heat load beam screens are compatible with expectations from laboratory studies of copper conditioning and deconditioning mechanisms, an extremely low carbon amount and the presence of CuO (non-native surface oxide) are observed on the high heat-load beam screens. The azimuthal distribution of CuO correlates with the density and energy of electron impingement. Such chemical modifications increase the SEY and inhibit the full conditioning of affected surfaces. This work shows a direct correlation between the abnormal LHC heat load and the surface properties of its beam screens, opening the door to the development of curative solutions to overcome this critical limitation.  
poster icon Poster WEPAB339 [2.247 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB339  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)