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Electron cloud in the LHC
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The electron cloud developing in the beam pipes of the LHC is a source of heat load onto the
cryogenics system of its superconducting magnets in its arcs. Since the beginning of the LHC Run
2 (2015), this heat load exhibits puzzling features:

• Wide spread along the ring, in spite of an identical design of the 8 arcs

• Spread persisting during conditioning

High heat load arcs are close to the cryogenic capacity limit

→ critical issue for High-Luminosity LHC (higher beam intensity)
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See G. Iadarola’s presentation

G. Iadarola
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Aim and strategy
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During the Long Shutdown 2 (2019-2020), extraction of beam screens from a
low and a high heat load LHC dipole and investigation of any surface state
difference which could explain the heat load spread.

→ Analysis in azimuth of copper face of beam screen slices cut from magnetic
field and field-free regions (Surface chemistry, Secondary Electron Yield,
conditioning behaviour)

→ Comparison with expectations from conditioning and deconditioning
laboratory studies

Phys. Rev. Accel. Beams 22, 083101 (2019), Phys. Rev. Accel. Beams 23, 093101 (2020)
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Beam screens from low heat load dipole

4

Surface chemical analysis by X-Ray Photoelectron Spectroscopy

• Main copper oxidation product is Cu2O (native oxide) and low coverage by copper hydroxide Cu(OH)2

• Usual atomic composition

• Homogeneous in azimuth

Presence 
of CuII

Cu 2p

In field

Beam screen surface of low heat load dipole compatible with expectations from laboratory studies 
on copper conditioning / deconditioning

Cu2O, CuCu(OH)2
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Beam screens from high heat load dipole
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Surface chemical analysis by X-Ray Photoelectron Spectroscopy

• On most irradiated sides: presence of CuO (non-native oxide), in large amount

• On least irradiated sides: native Cu2O oxide

• Extremely low surface carbon content (unachievable by initial beam screen cleaning) at all azimuths
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Beam screens from high heat load dipole
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Surface chemical analysis by X-Ray Photoelectron Spectroscopy

• Presence of CuO (non-native oxide) at all azimuths

• Extremely low surface carbon content (unachievable by initial beam screen cleaning) at all azimuths
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Beam screen surface chemistry - summary
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Low heat load dipole

High heat load dipole

Electron cloud 
density distribution

Dipole field region Field-free region
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Cu2O

CuO

Cu2O + Cu(OH)2

Beam operation is an essential element in the formation of CuO
and decrease of carbon amount
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High versus low heat load – conditioning @ RT
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• Nominal conditioning for the low heat load beam screens

• Slower conditioning for the high heat load beam screen in the presence of CuO

Cu2O CuO
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Summary, conclusions and perspectives
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• This study allowed to identify surface chemical differences between components of the LHC 
which could be related to their different performances.

Courtesy P. Costa Pinto
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• Mechanisms of CuO build-up will be investigated by electron irradiation experiments at 10K 
in a combined XPS and SEY measurement setup (on going commissioning)

• These results open the door to the development of curative solutions against the presence 
of CuO to overcome the critical heat load limitation.


