Paper | Title | Page |
---|---|---|
MOPAB012 | Energy Deposition Study of the CERN HL-LHC Optics v1.5 in the ATLAS and CMS Insertions | 76 |
|
||
Funding: Research supported by the HL-LHC project The High Luminosity Large Hadron Collider (HL-LHC) is the approved CERN project aiming at further increasing the integrated luminosity of the LHC by a factor 10. As such, it implies a complete redesign of the experimental high-luminosity insertions of ATLAS and CMS. The progressive evolution of the new layout and optics requires a continuous analysis of the radiation environment, to which magnets and other equipment are exposed to. This is assured by means of Monte Carlo simulations of the collision debris on the evolving machine model. The latter featured several developments, such as the explicit inclusion of the cold protection diodes of the final focusing circuits as well as the crab cavities cryomodule. This work presents the most updated characterization of the radiation field with FLUKA and its impact in the insertion region and the dispersion suppressor of Point 1 and 5, for the HL-LHC optics v1.5 released in 2019. Various optimization and mitigation studies are highlighted, providing key information for maximizing the lifetime of new and present magnets. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB012 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 25 May 2021 issue date ※ 21 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB013 | Radiation to Electronics Impact on CERN LHC Operation: Run 2 Overview and HL-LHC Outlook | 80 |
|
||
Funding: Research supported by the HL-LHC project After the mitigation measures implemented during Run 1 (2010-2012) and Long Shutdown 1 (LS1, 2013-2014), the number of equipment failures due to radiation effects on electronics (R2E) leading to LHC beam dumps and/or machine downtime has been sufficiently low as to yield a minor impact on the accelerator performance. During Run 2 (2015-2018) the R2E related failures per unit of integrated luminosity remained below the target value of 0.5 events/fb-1, with the sole exception of the 2015 run during which the machine commissioning took place. However, during 2018, an increase in the failure rate was observed, linked to the increased radiation levels in the dispersion suppressors of the ATLAS and CMS experimental insertions, significantly affecting the Quench Protection System located underneath the superconducting magnets in the tunnel. This work provides an overview of the Run 2 R2E events during LHC proton-proton operation, putting them in the context of the related radiation levels and equipment sensitivity, and providing an outlook for Run 3 and HL-LHC operation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB013 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 23 July 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEXA06 | Study of Pb-Pb and Pb-p Collision Debris in the CERN LHC in View of HL-LHC Operation | 2528 |
|
||
Funding: Research supported by the HL-LHC project For the first time, a full characterization of the Pb-Pb and Pb-p collision debris as well as its impact in terms of energy deposition in the long straight section (LSS) of CERN’s Large Hadron Collider has been carried out. By means of Monte Carlo simulations with FLUKA, both inelastic nuclear interaction and electromagnetic dissociation were taken into account as source term for lead ion operation, while for Pb-p operation only nuclear interaction is of importance. The radiation exposure of detectors exclusively destined for ion beam runs is assessed, allowing drawing implications of their use. This work gave the opportunity for an unprecedented validation of simulation results against measurement of beam loss monitors (BLM) in the experimental LSS during ion operation. Pb-Pb operation refers to the 2018 ion run at 6.37 TeV per charge with a +160 microrad half crossing angle in the vertical plane at the ATLAS interaction point. Instead, Pb-p operation was benchmarked for the 2016 ion run at 6.5 TeV per charge with -140 microrad half crossing angle in the vertical plane at the same location. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXA06 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 05 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEXB07 | Transverse Beam Profile Measurements from Extraction Losses in the PS | 2548 |
|
||
During Multi-Turn Extraction (MTE) of continuous beams in the Proton Synchrotron (PS) at CERN, losses are generated on the blade of both the active and non-active septum during the rise time of the extraction kickers. Utilising pCVD Diamond detectors, secondary signal generated from these losses is measured. The high time resolution of these devices allows for insight into the detail of the horizontal beam distribution during extraction, and hence useful information such as the horizontal beam emittance may be computed. In this contribution, FLUKA simulations to relate the detector response to the beam impact conditions on the blades of the two septa are presented. The dependence on the beam angle, magnetic fringe field, and positioning of the detector is explored. Finally, realistic beam distributions are used to determine expected signal profiles at each septum. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB07 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 20 July 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB025 | Collimation Strategies for Secondary Beams in FCC-hh Ion-Ion Operation | 2652 |
|
||
The target peak luminosity of the CERN FCC-hh during Pb-Pb collisions is more than a factor of 50 greater than that achieved by the LHC in 2018. As a result, the intensity of secondary beams produced in collisions at the interaction points will be significantly higher than previously experienced. With up to 72 kW deposited in a localised region by a single secondary beam type, namely the one originated by Bound Free Pair Production (BFPP), it is essential to develop strategies to safely intercept these beams, including the ones from ElectroMagnetic Dissociation (EMD), in order to ensure successful FCC-hh Pb-Pb operation. A series of beam tracking and energy deposition simulations were performed to determine the optimal solution for handling the impact of such beams. In this contribution the most advanced results are presented, with a discussion of different options. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB025 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 02 July 2021 issue date ※ 18 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |