Paper | Title | Page |
---|---|---|
FRXB02 | Development of 36 GHz RF Systems for RF Linearisers | 4518 |
|
||
Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431. As part of the deign studies, the CompactLight project plans to use an injector in the C-band. Which constitutes a particular complication for the harmonic system in charge of linearising the beam’s phase space, since it means its operation frequency could be higher than the standard X-band RF technologies. In the present work, we investigated a 36 GHz (Ka-band) as the ideal frequency for the harmonic system. A set of structure designs are presented as candidates for the lineariser, based on different powering schemes and pulse compressor technologies. The comparison is made both in terms of beam dynamics and RF performance. Given the phase stability requirements for the MW class RF sources needed for this system, we performed careful studies of a Gyro-Klystron and a multi-beam klystron as potential RF sources, with both showing up to 3 MW available power using moderate modulator voltages. Alternatives for pulse compression at Ka-band are also discussed in this work. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXB02 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 19 July 2021 issue date ※ 25 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB355 | Multi-Objective Optimization of RF Structures | 1103 |
|
||
In this work, we apply multi-objective optimization methods to single-cell cavity models generated using non-uniform rational basis splines (NURBS). This modeling method uses control points and a NURBS to generate the cavity geometry, which allows for greater flexibility in the shape, leading to improved performance. Using this approach and multi-objective genetic algorithms (MOGAs) we find the Pareto frontiers for the typical key quantities of interest (QoI) including peak fields, shunt impedance and the modified Poynting vector. Visualizing these results becomes increasingly more difficult as the number of objectives increases, therefore, in order to understand these frontiers, we provide several techniques for analyzing, visualizing and using multi-dimensional Pareto fronts specifically for RF cavity design. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB355 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 15 July 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUXC03 | Ferro-Electric Fast Reactive Tuner Applications for SRF Cavities | 1305 |
|
||
A Ferro-Electric fast Reactive Tuner (FE-FRT) is a novel type of RF cavity tuner containing a low loss ferroelectric material. FE-FRTs have no moving parts and allow cavity frequencies to be changed extremely quickly (on the timescale of 100s of ns or less). They are of particular interest for SRF cavities as they can be placed outside the liquid helium environment and without an FE-FRT it’s typically very difficult to tune SRF cavities quickly. FE-FRTs can be used for a wide variety of use cases including microphonics suppression, RF switching, and transient beam loading compensation. This promises entirely new operational capabilities, increased performance and cost savings for a variety of existing and proposed accelerators. An overview of the theory and potential applications will be discussed in detail. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXC03 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 02 August 2021 issue date ※ 25 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB380 | Measurements of Field Emission Induced Optical Spectra | 3602 |
|
||
Field emission induced optical spectra in a dc electrode system have been measured using a spectrometer and CCD camera system in order to gain insight into the nature of field emissions sites. Spectra were measured from between 2 ridged parallel copper electrodes with a gap ranging from 60µm to 100µm and a bias voltage of up to 8000V under high vacuum conditions. A strong correlation between the light intensity of the spectra and the measured field emitted current was observed as a function of applied voltage. A characteristic broadband spectrum ranging from 550nm and 850nm wavelength was observed but there were important features which varied as a function of observation angle, polarity, and conditioning state and also with time. Possible causes of the optical spectra being considered include black body radiation, optical transition radiation and cathode luminescence of copper. Further experiments are ongoing with an improved optical setup to increase optical alignment for measurements with different materials of electrodes, developing further understanding of the cause of the optical spectra, to provide understanding into characteristics and evolution of emission sites. | ||
Poster WEPAB380 [1.158 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB380 | |
About • | paper received ※ 11 May 2021 paper accepted ※ 24 June 2021 issue date ※ 24 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |