Author: Blarasin, G.B.
Paper Title Page
TUPAB325 Data-Driven Risk Matrices for CERN’s Accelerators 2260
 
  • T. Cartier-Michaud, A. Apollonio, G.B. Blarasin, B. Todd, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project.
A risk matrix is a common tool used in risk assessment, defining risk levels with respect to the severity and probability of the occurrence of an undesired event. Risk levels can then be used for different purposes, e.g. defining subsystem reliability or personnel safety requirements. Over the history of the Large Hadron Collider (LHC), several risk matrices have been defined to guide system design. Initially, these were focused on machine protection systems, more recently these have also been used to prioritize consolidation activities. A new data-driven development of risk matrices for CERN’s accelerators is presented in this paper, based on data collected in the CERN Accelerator Fault Tracker (AFT). The data-driven approach improves the granularity of the assessment, and limits uncertainty in the risk estimation, as it is based on operational experience. In this paper the authors introduce the mathematical framework, based on operational failure data, and present the resulting risk matrix for LHC.
 
poster icon Poster TUPAB325 [0.499 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB325  
About • paper received ※ 19 May 2021       paper accepted ※ 24 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)