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Abstract
A risk matrix is a common tool used in risk assessment,

defining risk levels with respect to the severity and proba-
bility of the occurrence of an undesired event. Risk levels
can then be used for different purposes, e.g. defining sub-
system reliability or personnel safety requirements. Over
the history of the Large Hadron Collider (LHC), several risk
matrices have been defined to guide system design. Initially,
these were focused on machine protection systems, more
recently these have also been used to prioritise consolidation
activities. A new data-driven development of risk matrices
for CERN’s accelerators is presented in this paper, based
on data collected in the CERN Accelerator Fault Tracker
(AFT). The data driven approach improves the granularity of
the assessment, and limits uncertainty in the risk estimation,
as it is based on operational experience. In this paper the
authors introduce the mathematical framework, based on
operational failure data, and present the resulting risk matrix
for LHC.

INTRODUCTION
CERN’s accelerators have been successfully operated for

many years, both in terms of beam performance and ma-
chine availability, thanks to the experience developed in
system design, operation and maintenance. Traditionally,
accelerator systems were designed based on the know-how
from experts, physicists and engineers, and on the lessons
learned from previous machines. The increased damage po-
tential of the LHC and its size and complexity changed this
paradigm. New requirements for machine protection were
therefore derived from reliability engineering best practices
and tools. The LHC machine protection was designed ac-
cording to European standards for safety-critical electronic
systems, based on the concept of risk matrices and Safety
Integrity Levels (SIL) [1, 2]. At that time, the LHC failure
modes were identified by experts and assigned estimated
probabilities/frequencies of occurrence and severity/conse-
quences [3]. Risk matrices adapted to the LHC were first
presented in [4].

After several years of operation, we are now in the position
to feedback operational experience into the definitions of
these risk matrices, to more accurately evaluate the reliability
requirements for future system designs, in particular for the
different upgrades of the LHC.

In the first section of this paper, the concept, parameters
and limitations of traditional risk matrices are recalled. The
data-driven risk curves are introduced in the second section.
Using risk curves based on the data gathered in the Accel-
erator Fault Tracker (AFT) [5], data-driven risk matrices
∗ thomas.cartier-michaud@cern.ch

tailored to CERN’s accelerators are presented in the third
section.

LIMITATIONS OF RISK MATRICES
Risk matrices are used as a tool for risk management and

decision making, allowing to map the failure modes of a
system or machine in a 2D table, discretized with respect
to the likelihood of a failure mode (the y-axis in this paper)
and its consequences (x-axis, see Fig. 1). Both axes could
be expressed in any relevant unit, the likelihood could be a
frequency or a probability, the consequence could use several
reference quantities, as recovery time or cost impact. Both
dimensions can be scaled in a quantitative way, e.g. ’one
failure per month’ or ’10 % probability of occurrence’, or
in a qualitative way, e.g. ’rare/frequent/certain’, ’low/high
probability’. The progression of both scales is generally
logarithmic to better cover wide ranges of frequencies and
consequences.

Figure 1: Four risk matrix sketches. The red color defines
unacceptable risks, the green defines acceptable risks. Top
left, low resolution risk matrix with the threshold 𝑇 = 50.
Top right, high definition risk matrix. Bottom left, definition
of the risk as 𝑅(𝐹, 𝐶) = 𝐹 × 𝐶2/10 and 𝑇 = 25. Bottom
right, high definition and custom definition of the risk.

Given 𝐹 a frequency and 𝐶 a consequence, the risk 𝑅 is
defined as 𝑅(𝐹, 𝐶) = 𝐹 × 𝐶. The acceptability of different
risks is defined using a threshold 𝑇 to split the space (𝐹 × 𝐶)
in two areas: ”acceptable” and ”unacceptable”. The fail-
ure modes of a system are then placed onto the risk matrix,
and critical ones can be identified according to these defini-
tions and mitigation actions put in place to reduce either the
frequency and/or the consequences of critical failure modes.
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The main limitation for the use of risk matrices is in the un-
certainty of the estimates for likelihood and consequences of
a failure mode, as these have to be defined very early during
the design and potentially for a new system, for which previ-
ous experience might not be available. Placing failure modes
in a risk matrix defined a-priori, with very limited accuracy
in the definition of the axes’ discretization (see Fig. 1 top
left), can lead to significant over- or underestimation of the
risk. With a refined discretization in both dimensions (see
Fig. 1 top right), the classification of each cell of the matrix
in either ”acceptable” or ”unacceptable” offers the possibil-
ity to use alternative cost functions 𝑅(𝐹, 𝐶) = 𝐹 × 𝐶2/10.
With this different function, a higher weight on the conse-
quence is put compared to the frequency in order to penalise
the faults with important consequences (see Fig. 1 bottom
left).

As an example, in accelerator-driven systems such as
MYRRHA, an accelerator is coupled with a sub-critical
nuclear reactor. For these type of accelerators, faults of a
duration longer than few seconds have to be avoided because
of mechanical stresses induced on the reactor in case of a
beam stop and the heavy restart procedures [6]. For such
a system, a configuration with many faults with a duration
shorter than a second is preferable to a configuration leading
to a few faults longer than a few seconds, as shown in Fig. 1
bottom right. This example of risk matrix uses the minimum
number of discretization points in both axes to match the
desired frontier of acceptability. It can be convenient to still
keep additional discretization points, such as Fig. 1 top right
and bottom left, because a risk matrix is often reused for
different applications by simply changing the threshold 𝑇.

The choice of a particular discretization and the frontier of
acceptability, i.e. function 𝑅(𝐹, 𝐶) and threshold 𝑇, should
be optimized for each application. This optimisation is per-
formed in this paper using a data driven approach on systems
already in operation, the LHC and CERN’s injector com-
plex, with the aim of limiting the loss of information when
translating the data used as an input into the resulting risk
matrix as described in the next section.

DATA-DRIVEN RISK CURVES
The experience based failure data from the different accel-

erators at CERN is stored in the Accelerator Fault Tracker
(AFT) [5]. The AFT data have been collected and reviewed
by a team of experts from the beginning of 2015 for the
LHC and from 2017 onwards for the injectors. The pro-
posed metrics used for the CERN’s risk matrices are based
on failure frequency and recovery time. The latter is chosen
to measure the time in which the accelerators are not avail-
able to produce physics or provide beam to the downstream
machines. Taking the data from AFT without any additional
filtering leads to risk matrices which directly reflect the past
operation. The availability of the LHC and its injectors
has been remarkable in the last years [7–9]. With the aim
of improving future operation and providing guidelines for
new system designs, a selection of faults coming from AFT

could be considered today as “unacceptable”, and thus are
excluded from the data used in the process of generating risk
matrices and risk curves.

In order to avoid the discretization problem described in
the previous section, we introduce the use of risk curves.
A continuous risk curve is defined across all frequen-
cies and recovery times based on the existing failure data.
This is performed by approximating existing data with
a curve. Using a parameter 𝛼, one defines the interval
𝐼𝛼,𝑑𝑖

= [𝑑𝑖/𝛼, 𝑑𝑖 × 𝛼] for a failure of duration 𝑑𝑖. Given a
fault 𝑑1= 25 min, one could say this fault is of the same
order than a fault 𝑑2𝑛 = 60 min with an 𝛼 = 3 margin be-
cause 25 ∈ [60/3, 60 × 3] but it is not true if 𝛼 = 2 as
25 ∉ [60/2, 60 × 2]. 𝐼𝛼,𝑑𝑖

is then used to define the function
evaluating the frequency of faults of a duration 𝑑 with an 𝛼
margin: 𝐹𝛼(𝑑) = ∑𝑁

𝑖=1 𝟙𝐼𝛼,𝑑𝑖
(𝑑)/𝐷, with 𝟙𝐼𝛼,𝑑𝑖

the indica-
tor function which equals 1 if 𝑑 ∈ 𝐼𝛼,𝑑𝑖

and 0 otherwise, 𝑁
the number of faults used by the data driven approach, 𝑑𝑖
being the duration of the i-th fault and 𝐷 the period of time
used to acquire the list of faults 𝑑𝑖.

Figure 2: 𝐹𝛼(𝑑) data-driven risk curves based on LHC fault
recovery times for three different values of 𝛼.

Figure 3: 𝐹𝛼(𝑑) data-driven risk curves based on LINAC2,
PSB, PS, SPS and LHC fault recovery times for 𝛼 = √3.
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Figure 4: LHC data-driven risk matrix derived from four years of operation. Green cells are considered ”acceptable”, red
cells are ”unacceptable”.

In Fig. 2, LHC data-driven risk curves 𝐹𝛼(𝑑) are repre-
sented for three values of 𝛼. For the considered use cases,
the values of 𝛼 which make the more sense are larger than √2
and smaller than √20. Inferior 𝛼 would introduce too many
intervals 𝐼𝛼,𝑑, e.i. too many categories of faults, to cover the
relevant range of duration considered, from minutes to years.
Superior 𝛼 would mix faults of too different duration to be
considered equivalent from an operational point of view. In
Fig. 3, curves are represented also for the accelerators in
the CERN’s injector complex for 𝛼 = √3. Beams are pro-
duced in LINAC2, then transferred to the Proton Synchrotron
Booster (PSB), which feeds the Proton Synchrotron (PS),
feeding itself the Super Proton Synchrotron (SPS), the last
accelerator before the LHC. The integral of the risk curve,
which is a measure for the unavailability of an accelerator,
increases from LINAC2 to the LHC. This is explained by
the increasing complexity, size and number of faults of each
downstream accelerator as compared to the previous one,
closer to the beam source.

DATA-DRIVEN RISK MATRICES FOR
CERN’S ACCELERATORS

The previous section showed that data-drive risk curves
help to better define the discretization of risk matrices with
respect to the frequency and consequences of failures, allow-
ing to identify where to place discretization points according
to the main variations of the curves. Adding those points
reduces the errors in the risk estimation with too coarse
discretization intervals. In this section additional practical
aspects are discussed for defining discrete risk matrices with
the help of risk curves. It is important to include feedback
of accelerator experts from a design and operational point
of view. It is interesting to notice that the ratio between the
highest and lowest recovery time in each interval retained,
as shown in Fig. 4, is at most 20 for the first column and at
least 2. It is equivalent to use 𝛼 = √20 and 𝛼 = √2 when
computing data-driven risk curves as the ratio between the
two boundaries of 𝐼𝛼,𝑑 is 𝛼2. For the LHC, this translates
into nine frequency intervals (nine rows) as can be seen in
Fig. 4. The frequency of 1/shift (1/8h) is used to reflect
what operators potentially encounter during one of the three

daily shifts. The observed failures lie in the first seven rows.
As the longest stop observed in operation since 2015 has
been of the order of one week for the LHC, observed fail-
ures are within the first eight columns out of eleven. In the
”recovery time” dimension, the discretization reflects the
way machines are operated and maintained. Failures of less
than 20 minutes can usually be resolved remotely or do not
require any action. Failures that are resolved remotely or
self correcting require less than 20 minutes. Failures in the
range of 3-12 h generally require access in the machine. Fail-
ures of 24 hours or more are typically outliers that required
dedicated follow-up and recovery procedures.

To be able to place failure modes with very low frequency
or very high consequence, an extension of the data-driven
risk curves is necessary. This is done analytically, following
a simple linear model. Given 𝑈𝑂𝐸, the measured unavailabil-
ity of a machine according to the ”Observed Events”, 𝑓𝑅𝐸 is
a factor defining an acceptable unavailability budget due to
the possible occurrence of ”Rare Events” with high-impact,
such that 𝑈𝑅𝐸 = 𝑈𝑂𝐸 × 𝑓𝑅𝐸. The total unavailability accord-
ing to the risk matrix is then 𝑈 = 𝑈𝑂𝐸 + 𝑈𝑅𝐸. The value
of 𝑓𝑅𝐸 depends on the damage potential of the machine and
the operational experience. For the LHC, this factor is fixed
to 10% and 𝑈𝑅𝐸 is distributed over the four last columns of
the risk matrix.

CONCLUSIONS AND OUTLOOK
A data-driven approach to build risk matrices for systems

based on historical failure data has been presented. The
failure data of CERN’s accelerators have been collected and
reviewed by experts with the AFT. Data-driven risk curves
have been introduced as an intermediate step, providing in-
sights on the optimal risk-matrix discretization, the assumed
uncertainty margins, and the operational conditions for the
different accelerators. The result is a series of data-driven
risk matrices for the LHC and CERN’s injector complex.
Data-driven risk matrices are already in use at CERN to
define the acceptable failure frequency for newly designed
systems or upgrades of the LHC. However, the approach pre-
sented in the paper is generic and applicable to any system
or facility for which historical failure data are available.
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