Author: Bernhard, A.
Paper Title Page
MOPAB164 Miniature, High Strength Transport Line Design for Laser Plasma Accelerator-Driven FELs 561
 
  • S. Fatehi, A. Bernhard, A.-S. Müller, M.S. Ning
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKA PlasmaFEL (Federal Ministry of Education and Research).
Laser-plasma acceleration is an outstanding candidate to drive the next-generation compact light sources and FELs. To compensate large chromatic effects using novel compact beam optic elements in the beam transport line is required. We aim at designing miniature, high strength, normal conducting and superconducting transport line magnets and optics for capturing and matching LPA-generated electron bunches to given applications. Our primary application case is a demonstration experiment for transverse gradient undulator (TGU) FELs, to be performed at the JETI laser facility, Jena, Germany. In this contribution, we present the current design of the beam transport line magnets and the beam optics calculations.
Laser Plasma Accelerators, FELs, Magnets, Beam Dynamics, Superconductivity, transverse gradient undulator
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB164  
About • paper received ※ 19 May 2021       paper accepted ※ 25 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB087 Full Characterization of the Bunch-Compressor Dipoles for FLUTE 1585
 
  • Y. Nie, A. Bernhard, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, Y. Tong
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The Ferninfrarot Linac- Und Test-Experiment (FLUTE) is a KIT-operated linac-based test facility for accelerator research and development as well as a compact, ultra-broadband and short-pulse terahertz (THz) source. As a key component of FLUTE, the bunch compressor (chicane) consisting of four specially designed dipoles will be used to compress the 40-50 MeV electron bunches after the linac down to single fs bunch length. The maximum vertical magnetic field of the dipoles reach 0.22 T, with an effective length of 200 mm. The good field region is ±40 mm and ±10.5 mm in the horizontal and vertical direction, respectively. The latest measurement results of the dipoles in terms of field homogeneity, excitation and field reproducibility within the good field regions will be reported, which meet the predefined specifications. The measured 3D magnetic field distributions have been used to perform beam dynamics simulations of the bunch compressor. Effects of the real field properties on the beam dynamics, which are different from that of the ASTRA built-in dipole field, will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB087  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB042 Bending Radius Limits of Different Coated REBCO Conductor Tapes - An Experimental Investigation with Regard to HTS Undulators 3837
 
  • S.C. Richter, A. Bernhard, A. Drechsler, A.-S. Müller, B. Ringsdorf, S.I. Schlachter
    KIT, Karlsruhe, Germany
  • S.C. Richter, D. Schoerling
    CERN, Geneva, Switzerland
 
  Funding: This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 05E18CHA).
Compact FELs require short-period, high-field undulators in combination with compact accelerator structures to produce coherent light up to X-rays. Likewise, for the production of low emittance positron beams for future lepton colliders, like CLIC or FCC-ee, high-field damping wigglers are required. Applying high-temperature superconductors in form of coated REBCO tape conductors allows reaching higher magnetic fields and larger operating margins as compared to low-temperature superconductors like Nb-Ti or Nb3Sn. However, short undulator periods like 13 mm may require bending radii of the conductor smaller than 5 mm inducing significant bending strain on the superconducting layer and may harm its conducting properties. In this paper, we present our designed bending rig and experimental results for REBCO tape conductors from various manufacturers and with different properties. Investigated bending radii reach from 20 mm down to 1 mm and optionally include half of a helical twist. To represent magnet winding procedures, the samples were bent at room temperature and then cooled down to T = 77 K in the bent state to test for potential degradation of the superconducting properties.
 
poster icon Poster THPAB042 [1.871 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB042  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB126 Operational Experience and Characterization of a Superconducting Transverse Gradient Undulator for Compact Laser Wakefield Accelerator-Driven FEL 4009
 
  • K. Damminsek, A. Bernhard, J. Gethmann, A.W. Grau, A.-S. Müller, Y. Nie, M.S. Ning, S.C. Richter, R. Rossmanith
    KIT, Karlsruhe, Germany
 
  A 40-period superconducting transverse gradient undulator (TGU) has been designed and fabricated at Karlsruhe Institute of Technology (KIT). Combining a TGU with a Laser Wakefield Accelerator (LWFA) is a potential key for realizing an extremely compact Free Electron Laser (FEL) radiation source. The TGU scheme is a viable option to compensate the challenging properties of the LWFA electron beam in terms of beam divergence and energy spread. In this contribution, we report on the operational experience of this TGU inside its own cryostat and show the current status of the TGU and the further plan for experiments. This work is supported by the BMBF project 05K19VKA PlasmaFEL (Federal Ministry of Education and Research).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB126  
About • paper received ※ 19 May 2021       paper accepted ※ 25 August 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)