Author: Berg, J.S.
Paper Title Page
MOPAB216 20-24 GeV FFA CEBAF Energy Upgrade 715
 
  • S.A. Bogacz, J.F. Benesch, R.M. Bodenstein, B.R. Gamage, G.A. Krafft, V.S. Morozov, Y. Roblin
    JLab, Newport News, Virginia, USA
  • J.S. Berg, S.J. Brooks, D. Trbojevic
    BNL, Upton, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
A proposal was formulated to increase the CEBAF energy from the present 12 GeV to 20-24 GeV by replacing the highest-energy arcs with Fixed Field Alternating Gradient (FFA) arcs. The new pair of arcs would provide six or seven new beam passes, going through this magnet array, allowing the energy to be nearly doubled using the existing CEBAF SRF cavity system. One of the immediate accelerator design tasks is to develop a proof-of-principle FFA arc magnet lattice that would support simultaneous transport of 6-7 passes with energies spanning a factor of two. We also examine the possibility of using combined function magnets to configure a cascade, six-way beam split switchyard. Finally, a novel multi-pass linac optics based on a weakly focusing lattice is being explored.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB040 Design Concept for the Second Interaction Region for Electron-Ion Collider 1435
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, A. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, A.V. Sy, C. Weiss, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 and Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The possibility of two interaction regions (IRs) is a design requirement for Electron-Ion Collider (EIC). There is also a significant interest from the nuclear physics community to have a 2nd IR with measurement capabilities complementary to those of the 1st IR. While the 2nd IR will be in operation over the entire energy range of ~20GeV to ~140GeV center of mass (CM). The 2nd IR can also provide an acceptance coverage complementary to that of the 1st. In this paper, we present a brief overview and the current progress of the 2nd IR design in terms of the parameters, magnet layout, and beam dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB040  
About • paper received ※ 24 May 2021       paper accepted ※ 31 August 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB042 Large Radial Shifts in the EIC Hadron Storage Ring 1443
 
  • S. Peggs, J.S. Berg, K.A. Drees, X. Gu, C. Liu, H. Lovelace III, Y. Luo, G.J. Marr, A. Marusic, F. Méot, R.J. Michnoff, V. Ptitsyn, G. Robert-Demolaize, M. Valette, S. Verdú-Andrés
    BNL, Upton, New York, USA
  • K.E. Deitrick
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.R. Gamage
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider will collide hadrons in the Hadron Storage Ring (HSR) with ultra-relativistic electrons in the Electron Storage Ring. The HSR design trajectory includes a large radial shift over a large fraction of its circumference, in order to adjust the hadron path length to synchronize collisions over a broad range of hadron energies. The design trajectory goes on-axis through the magnets, crab cavities and other components in the six HSR Insertion Regions. This paper discusses the issues involved and reports on past and future beam experiments in the Relativistic Heavy Ion Collider, which will be upgraded to become the HSR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB002 The Interaction Region of the Electron-Ion Collider EIC 2574
 
  • H. Witte, J. Adam, M. Anerella, E.C. Aschenauer, J.S. Berg, M. Blaskiewicz, A. Blednykh, W. Christie, J.P. Cozzolino, K.A. Drees, D.M. Gassner, K. Hamdi, C. Hetzel, H.M. Hocker, D. Holmes, A. Jentsch, A. Kiselev, P. Kovach, H. Lovelace III, Y. Luo, G.J. Mahler, A. Marone, G.T. McIntyre, C. Montag, R.B. Palmer, B. Parker, S. Peggs, S.R. Plate, V. Ptitsyn, G. Robert-Demolaize, C.E. Runyan, J. Schmalzle, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, F.J. Willeke, Q. Wu, Z. Zhang
    BNL, Upton, New York, USA
  • B.R. Gamage, T.J. Michalski, V.S. Morozov, M.L. Stutzman, W. Wittmer
    JLab, Newport News, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
This paper presents an overview of the Interaction Region (IR) design for the planned Electron-Ion Collider (EIC) at Brookhaven National Laboratory. The IR is designed to meet the requirements of the nuclear physics community *. The IR design features a ±4.5 m free space for the detector; a forward spectrometer magnet is used for the detection of hadrons scattered under small angles. The hadrons are separated from the neutrons allowing detection of neutrons up to ±4 mrad. On the rear side, the electrons are separated from photons using a weak dipole magnet for the luminosity monitor and to detect scattered electrons (e-tagger). To avoid synchrotron radiation backgrounds in the detector no strong electron bending magnet is placed within 40 m upstream of the IP. The magnet apertures on the rear side are large enough to allow synchrotron radiation to pass through the magnets. The beam pipe has been optimized to reduce the impedance; the total power loss in the central vacuum chamber is expected to be less than 90 W. To reduce risk and cost the IR is designed to employ standard NbTi superconducting magnets, which are described in a separate paper.
* An Assessment of U.S.-Based Electron-Ion Collider Science. (2018). Washington, D.C.: National Academies Press. https://doi.org/10.17226/25171
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB002  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB007 Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA 3762
 
  • K.E. Deitrick, N. Banerjee, A.C. Bartnik, D.C. Burke, J.A. Crittenden, J. Dobbins, C.M. Gulliford, G.H. Hoffstaetter, Y. Li, W. Lou, P. Quigley, D. Sagan, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.L. Hulsart, G.J. Mahler, F. Méot, R.J. Michnoff, S. Peggs, T. Roser, D. Trbojevic, N. Tsoupas
    BNL, Upton, New York, USA
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The Cornell-BNL ERL Test Accelerator (CBETA) developed several energy-saving measures: multi-turn energy recovery, low-loss superconducting radiofrequency (SRF) cavities, and permanent magnets. With green technology becoming imperative for new high-power accelerators, the lessons learned will be important for projects like the FCC-ee or new light sources, where spinoffs and lessons learned from CBETA are already considered for modern designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB015 Studies of the Imperfection in Crab Crossing Scheme for Electron-Ion Collider 3784
 
  • Y. Hao, J.S. Berg, D. Holmes, Y. Luo, C. Montag
    BNL, Upton, New York, USA
  • V.S. Morozov
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Crab crossing scheme is the essential scheme that accommodates large crossing angle without loss of luminosity in the design of Electron-Ion collider (EIC). The ideal optics and phase advances of the crab cavity pair are set to create a local crabbing bump in the interaction region (IR). However, there are always small errors in the actual lattice of IR. In this article, we will present the simulation and analytical studies on the imperfections in the crab crossing scheme in the EIC design. The tolerance of the imperfection and the possible remedies can be concluded from these studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB015  
About • paper received ※ 17 May 2021       paper accepted ※ 16 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB028 Beam-Beam Related Design Parameter Optimization for the Electron-Ion Collider 3808
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The design luminosity goal for the Electron-Ion Collider (EIC) is 1e34 cm-2s−1. To achieve such a high luminosity, the EIC design adopts high bunch intensities, flat beams at the interaction point (IP) with a small vertical β*-function, and a high collision frequency, together with crab cavities to compensate the geometrical luminosity loss due to the large crossing angle of 25mrad. In this article, we present our strategies and approaches to obtain the design luminosity by optimizing some key beam-beam related design parameters. Through our extensive strong-strong and weak-strong beam-beam simulations, we found that beam flatness, electron and proton beam size matching at the IP, electron and proton working points, and synchro-betatron resonances arising from the crossing angle collision play a crucial role in proton beam size growth and luminosity degradation. After optimizing those parameters, we found a set of beam-beam related design parameters to reach the design luminosity with an acceptable beam-beam performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 28 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB029 Dynamic Aperture Evaluation for the Hadron Storage Ring in the Electron-Ion Collider 3812
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is aiming at a design luminosity of 1e34 cm-2s−1. To maintain such a high luminosity, both beams in the EIC need an acceptable beam lifetime in the presence of the beam-beam interaction. For this purpose, we carried out weak-strong element-by-element particle tracking to evaluate the long-term dynamic aperture for the hadron ring lattice design. We improved our simulation code SimTrack to treat some new lattice design features, such as radially offset on-momentum orbits, coordinate transformations in the interaction region, etc. In this article, we will present the preliminary dynamic aperture calculation results with β*- function scan, radial orbit shift, crossing angle collision, and magnetic field errors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB029  
About • paper received ※ 17 May 2021       paper accepted ※ 01 September 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)