Author: Baxevanis, P.
Paper Title Page
TUPAB179 Design of an MBEC Cooler for the EIC 1819
 
  • W.F. Bergan, P. Baxevanis, M. Blaskiewicz, E. Wang
    BNL, Upton, New York, USA
  • G. Stupakov
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Reaching maximal luminosity for the planned electron-ion collider (EIC) calls for some form of strong hadron cooling to counteract beam emittance increase from IBS. We discuss plans to use microbunched electron cooling (MBEC) to achieve this. The principle of this method is that the hadron beam will copropogate with a beam of electrons, imprinting its own density modulation on the electron beam. These electron phase space perturbations are amplified before copropogating with the hadrons again in a kicker section. By making the hadron transit time between modulator and kicker dependent on hadron energy and transverse offset, the energy kicks which they receive from the electrons will tend to reduce their longitudinal and transverse emittances. We discuss details of the analytic theory and searches for optimal realistic parameter settings to achieve a maximal cooling rate while limiting the effects of diffusion and electron beam saturation. We also place limits on the necessary electron beam quality. These results are corroborated by simulations.
 
poster icon Poster TUPAB179 [4.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB179  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)