Author: Arlandoo, M.
Paper Title Page
MOPAB126 BESSY III & MLS II - Status of the Development of the New Photon Science Facility in Berlin 451
 
  • P. Goslawski, M. Abo-Bakr, F. Andreas, M. Arlandoo, J. Bengtsson, V. Dürr, K. Holldack, J.-G. Hwang, A. Jankowiak, B.C. Kuske, J. Li, A.N. Matveenko, T. Mertens, A. Meseck, E.C.M. Rial, M. Ries, M.K. Sauerborn, A. Schälicke, M. Scheer, P. Schnizer, L. Shi, J. Viefhaus
    HZB, Berlin, Germany
  • J. Lüning
    UPMC, Paris, France
 
  HZB operates and develops two synchrotron radiation sources at Berlin Adlershof. The larger one, BESSY II with an energy of 1.7 GeV and 240 m circumference is optimized for soft-X rays and in operation since 1999. The smaller one is the MLS (Metrology Light Source), owned by the Physikalische Technische Bundesanstalt (PTB) - Germany’s National Metrology Institute. It is designed to fulfill the special metrology needs of the PTB with an energy of 0.6 GeV and 48 m circumference, covering the spectral range from THz and IR to EUV/VUV. In 2020 a discussion process has been started to define the requirements for successors of BESSY II and MLS and to study the possibilities integrate them into a new photon science facility in Berlin Adlershof. Here, we give a status report and present a first envisaged parameter space to both machines (see also MOPAB262, MOPAB220, MOPAB048, MOPAB242).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB126  
About • paper received ※ 18 May 2021       paper accepted ※ 24 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB262 First Thoughts on Lattices for a possible Metrology Light Source 2 833
 
  • M. Arlandoo, M. Abo-Bakr, P. Goslawski, J. Li
    HZB, Berlin, Germany
 
  The Physikalisch-Technische Bundesanstalt (PTB), in cooperation with the Helmholtz-Zentrum Berlin (HZB), operates the Metrology Light Source (MLS), which is a low-energy electron storage ring. The MLS can be operated in a low-alpha mode to produce coherent synchroton ration in the far-IR and THz spectral range. In the scope of the Conceptual Design process for a BESSY II successor, the PTB also requested for an MLS successor to cover their increasing demands on synchrotron radiation. A combination of two different machines, one optimized for low emittance (BESSY III) and one for flexible timing capabilities (MLS II), would provide best radiation capabilities for our user community. In this paper, we discuss the demands on the MLS II and propose first lattice candidates which may meet the needs of the PTB and HZB. Currently, we focus on linear lattices for standard user mode with first steps towards nonlinear optimization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB262  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB213 Important Drift Space Contributions to Non-Linear Beam Dynamics 1914
 
  • J. Frank, M. Arlandoo, P. Goslawski, J. Li, T. Mertens, M. Ries
    HZB, Berlin, Germany
 
  This paper presents an in-depth analysis of the non-linear contributions of drift spaces in beam dynamics for the creation of Transverse Resonance Island Buckets (TRIBs). TRIBs have been successfully generated in BESSY II and MLS at the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB). They offer the possibility of generating a second stable orbit and, by populating the orbit with a different electron bunch pattern, allow to effectively have two distinct radiation sources in the same machine individually tailored to different user needs. We demonstrate the generation of TRIBs by order of non-linearity on simple lattice configurations by only treating the drift space as the non-linear element. Moreover, we also insert other non-linear magnets to show how they modify the already generated TRIBs from the drift spaces. We conclude by giving a qualitative analysis of the occurring effects, which provides a guideline as to when the linear approximation is insufficient and the non-linear contribution has to be taken into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB213  
About • paper received ※ 12 May 2021       paper accepted ※ 31 August 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB214 Alpha Buckets in Longitudinal Phase Space: A Bifurcation Analysis 1917
 
  • J. Frank, M. Arlandoo, P. Goslawski, T. Mertens, M. Ries
    HZB, Berlin, Germany
 
  At HZB’s BESSY II and MLS facilities we have the ability to tune the momentum compaction factor α up to second non-linear order. The non-linear dependence α(δ) brings qualitative changes to the longitudinal phase space and introduces new fix points α(δ)=0 which produce the so-called α-buckets. We present with this paper an analysis of this phenomena from the standpoint of bifurcation theory. With this approach we were able to characterize the nature of the fix points and their position in direct dependence on the tunable parameters. Furthermore, we are able to place stringent conditions onto the tunable parameters to either create or destroy α-buckets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB214  
About • paper received ※ 12 May 2021       paper accepted ※ 17 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB215 Novel Non-Linear Particle Tracking Approach Employing Lie Algebraic Theory in the TensorFlow Environment 1920
 
  • J. Frank, M. Arlandoo, P. Goslawski, J. Li, T. Mertens, M. Ries, L. Vera Ramirez
    HZB, Berlin, Germany
 
  With this paper we present first results for encoding Lie transformations as computational graphs in Tensorflow that are used as layers in a neural network. By implementing a recursive differentiation scheme and employing Lie algebraic arguments we were able to reproduce the diagrams for well known lattice configurations. We track through simple optical lattices that are encountered as the main constituents of accelerators and demonstrate the flexibility and modularity our approach offers. The neural network can represent the optical lattice with predefined coefficients allowing for particle tracking for beam dynamics or can learn from experimental data to fine-tune beam optics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB215  
About • paper received ※ 12 May 2021       paper accepted ※ 31 August 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)