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Abstract
At HZB’s BESSY II and MLS facilities we have the abil-

ity to tune the momentum compaction factor 𝛼 up to second
non-linear order. The non-linear dependence 𝛼(𝛿) brings
qualitative changes to the longitudinal phase space and intro-
duces new fix points 𝛼(𝛿) = 0 which produce the so-called
𝛼-buckets. We present with this paper an analysis of this
phenomena from the standpoint of bifurcation theory. With
this approach we were able to characterize the nature of the
fix points and their position in direct dependence on the tun-
able parameters. Furthermore, we are able to place stringent
conditions onto the tunable parameters to either create or
destroy 𝛼-buckets.

INTRODUCTION
The operation of synchrotron storage rings in the so called

quasi-isochronous mode is able to produce shorter bunch
lengths leading to wavelengths in the THz radiation regime.
This operation is possible due to the tweaking of the lat-
tice optical parameters to lower the momentum compaction
factor 𝛼. In the low-𝛼 mode the linear approximation of
the momentum compaction factor is no longer valid and a
higher order expansion is necessary. Placement of sextupole
and octupole magnets then enables to tune the first two non-
linear orders of 𝛼 as has been successfully realized at the
MLS [1] and DLS [2].
We neglect path lengthening due to betatron oscillation by
assuming a suppressed transverse chromaticity to obtain a
1-dimensional model and explore the richness of the Hamil-
tonian to draw a bifurcation diagram. Furthermore, we find
Hopf bifurcations occurring to produce further periodic or-
bits in the longitudinal phase space. We hope to present this
theoretical classification of 𝛼-buckets to show the insight
bifurcation theory can provide in manipulating non-linear
beam dynamics.

LONGITUDINAL HAMILTONIAN
The length of the closed orbit in an synchrotron storage

ring can be written as

𝐿 = 𝐿0(1 + 𝛼𝛿), (1)

where 𝐿0 is the length of the reference orbit, 𝛿 the momen-
tum deviation and 𝛼 = 𝛼(𝛿) the momentum compaction
factor which is momentum dependent. We have the typical
expansion up to second order

𝛼(𝛿) = 𝛼0 + 𝛼1𝛿 + 𝛼2𝛿2, (2)

which we can control at the MLS. From [3, Eq. (5.6)] we
use the derived Hamiltonian

𝐻 = −𝐴𝛿2(𝛼0
2 + 𝛼1

3 𝛿 + 𝛼2
4 𝛿2) − 𝐵 cos 𝜙, (3)

where 𝐴 is a fixed property of the lattice, 𝐵 = 𝐵(𝑈0) can be
tuned by the RF-Voltage 𝑈0 and 𝜙 is the RF-cavity phase.
The equations of motion then read

̇𝜙 = −𝐴𝛿(𝛼0 + 𝛼1𝛿 + 𝛼2𝛿2)
̇𝛿 = −𝐵 sin 𝜙.

(4)

BIFURCATION THEORY
The general concern of bifurcation theory is how qualita-

tive properties of the physical system change with respect to
the underlying parameter space. For example by tweaking
the above parameters in our Hamiltonian, Eq. (3), we can
change the nature of fixpoints from stable to unstable and
create or annihilate periodic solutions. Fixpoints are points
(𝜙∗, 𝛿∗) in phase space such that

̇𝜙(𝜙∗, 𝛿∗) = 0
̇𝛿(𝜙∗, 𝛿∗) = 0.

(5)

We can then employ perturbation theory around the fixpoints
to deduce the nature of the fixpoints, i.e. if they are stable
(have periodic solutions around them) or unstable (have hy-
perbolic behaviour in their neighborhood). A detailed treaty
on classification and the tools to analyze such behaviour can
be found in [4].

APPLICATION TO ALPHA BUCKETS
In our case finding fixpoints is quite easy since there are

no cross-terms in the Hamiltonian. We have two fixpoints
𝜙∗ = 0, 𝜋 on which we will focus first. The expansions
around the two fixpoints differ only by an overall sign change,
which we will absorb into the parameter 𝐵 and obtain

̇𝜙 = −𝐴(𝛼0𝛿 + 𝛼1𝛿2 + 𝛼2𝛿3)

̇𝛿 ≈ −𝐵(𝜙 − 1
6𝜙3 + ...),

(6)

where 𝐵 = sgn(𝜙∗)𝐵, sgn(0) = 1 and sgn(𝜋) = −1. We
can now rewrite the above equations as

̈𝛿 − 𝜁(𝛿 + 𝜆𝛿2 + 𝜇𝛿3) = 𝜖𝐹(𝜙, 𝛿), (7)

with 𝜁 = 𝐴𝐵𝛼0, 𝜆 = 𝛼1
𝛼0

, 𝜇 = 𝛼2
𝛼0

and treating the higher
orders as a perturbation 𝜖𝐹(𝜙, 𝛿) = −𝜁

2 𝜙2(𝛿+𝜆𝛿2+𝜇𝛿3).
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Figure 1: Bifurcation diagram for the remaining two param-
eters 𝜆, 𝜇 with the regions of interest marked in numbers
from 1-11.

UNPERTURBED ALPHA BUCKETS
As a first pass let us look at the unperturbed system 𝜖 = 0

and examine

̈𝛿 − 𝜁(𝛿 + 𝜆𝛿2 + 𝜇𝛿3) = 0. (8)

If 𝜁 > 0 we have the expansion around 𝜙∗ = 0 and for
𝜁 < 0 we have the expansion around 𝜙∗ = 𝜋. This is our
first global bifurcation example. The system undergoes this
bifurcation in 2 ways: either we change sgn(𝜁) by having
a negative momentum compaction factor 𝛼0 or reversing
the RF-voltage (akin to introducing a 𝜋 phase shift in the
cavity). As can be easily seen from the above differential
equation, we either have a harmonic or a hyperbolic
solution. Hence, this global bifurcation will result in flip-
ping between stable and unstable fixpoints in our phase plots.

The remaining three fixpoints of the system are

𝛿0 = 0

𝛿± =
−𝜆 ± √𝜆2 − 4𝜇

2𝜇 , 𝜇 ≠ 0

𝛿± = − 1
𝜆, 𝜇 = 0.

(9)

We can draw a 2D bifurcation diagram for the remaining
two parameters 𝜆, 𝜇 as depicted in Fig. 1. We have sketched
the corresponding particle behaviour in longitudinal phase
space for each region and show the global bifurcation
𝜁 → −𝜁 by comparing Fig. 2 and Fig. 3.

We can now take a closer look at regions 1-11 in Figs.
1, 2 and 3. For region 5 we have effectively the equation
of the harmonic oscillator, depending on the sign of 𝜁 this
will have stable orbits around 0 and unstable hyperbolic
behaviour around 𝜋 and vice-versa. For region 9 the only
stable fixpoint is at (0, 0) or (0, 𝜋) (again depending on
sgn 𝜁) since the remaining fixpoints are imaginary.

The region pairs (1,3), (4,6), (7,11), and (8,10) reflect
the symmetry of the bifurcation diagram in the 𝜆-axis. By
switching 𝜆 → −𝜆 we effectively mirror the behaviour
over the fixpoint (0,0) since the position of the stable and

Figure 2: Schematics corresponding to the regions in dia-
gram (Fig. 1). We have 𝜁 > 0. The x-axis corresponds to
values 𝜙 ∈ [−2𝜋, 2𝜋] and the y-axis for 𝛿 ∈ [−4, 4] in
relative units.

Figure 3: Schematics corresponding to the regions in dia-
gram (Fig. 1). We have 𝜁 < 0. The x-axis corresponds to
values 𝜙 ∈ [−2𝜋, 2𝜋] and the y-axis for 𝛿 ∈ [−4, 4] in
relative units.

unstable fixpoints poses the same symmetry. This symmetry
is completely seen in region 2. 1

For regions 7 and 11, 𝛼2
1 has to dominate over 4𝛼0𝛼2,

meaning the ratio 𝛼0𝛼2
𝛼2

1
cannot exceed 25 %.

Regions 8 and 10 demonstrate the limiting behaviour
where two fixpoints merge together and become degenerate.

HOPF BIFURCATIONS
Let us now examine the perturbed equation

̈𝛿 − 𝜁(𝛿 + 𝜆𝛿2 + 𝜇𝛿3) = 𝜖𝐹(𝜙, 𝛿), (10)

1 Since sextupoles are the dominant element to tune 𝛼1, if we set them in
such a way that 𝛼1 ≈ 0, we can expand the stable region by pushing the
stable fixpoints further apart; their positions are then given by ± √−𝜇

𝜇 and
one must only be careful not to destroy the envelope region as discussed
in the next section on Hopf bifurcations.
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Figure 4: Hopf curves drawn into the bifurcation diagram
Fig. 1. We have 𝜁 > 0.

The characteristic polynomial for eigenvalues 𝑙 at any of the
critical points is

𝑙2 + 𝜖 𝜕𝐹
𝜕𝜙𝑙 + const. = 0. (11)

We now have to examine the critical points for Hopf bifurca-
tions (where the real part of the eigenvalues becomes zero)
to find additional closed orbit solutions. We only need to
focus on fixpoints where 𝜙∗ = 0 due to the above mentioned
global bifurcation 𝜁 → −𝜁.
For 𝛼-buckets the above characteristic equation does not
help us since

𝜕𝐹
𝜕𝜙 = 0 (12)

for any values of 𝜆, 𝜇 and we cannot deduce any information
from it. We have to resort to higher order expansions beyond
linearization of the second order differential Eq. (10). The
first non-trivial derivative yields more information. The
fixpoint 𝛿∗ = 0 is trivial. If we insert the fixpoints 𝛿± we
get

𝜕3𝐹(𝜙, 𝛿)
𝜕𝜙2𝜕𝛿

∣(0,𝛿±) = −4𝜇 + 3𝜆2 − 2𝜆

± √𝜆2 − 4𝜇 ∓ 3𝜆√𝜆2 − 4𝜇 != 0.
(13)

With this we are able to amend our previous bifurcation
diagram (Fig. 1) with the lines for Hopf bifurcations as de-
picted in Fig. 4. We have again sketched the corresponding
particle behaviour for the regions of interest as can be seen
in Fig. 5. We see that by crossing from region 1 → 2 our sys-
tem obtains additional periodic solutions around the stable
fixpoints 𝛿± creating an envelope. Such an occurrence may
be used as a lifetime feedback ”re-injecting” a particle from
the lower into the upper bucket (for comp. [3, Fig. 5.14]) to
exactly compensate the lifetime losses. Crossing the bound-
ary line of region 6 reduces the existing periodic solutions
to a negligible neighborhood of the fixpoint.

CONCLUSION
With this contribution we hope to have presented bifurca-

tion theory as a powerful tool to be employed in the acceler-

Figure 5: Creation or annihilation of periodic solutions de-
pending on the Hopf region from Fig. 4. We have 𝜁 > 0 and
the diagram is magnified only around the region of 𝜙 = 0.

ator community to control non-linear beam dynamics. The
fundamental shift from phase space to parameter space al-
lows us to decide which particular non-linear effect we wish
to employ in the accelerator and then find the correspond-
ing hypersurface in parameter space where this is possible.
Furthermore, we are also able to place stringent conditions
between parameters as algebraic constraints which allows
us to maximize or minimize effects. We have shown that
creation of additional periodic solutions missed by lead-
ing order approximations is determined by the condition of
Hopf bifurcations to occur. As an interesting extension we
propose to find homoclinic bifurcations by constructing so
called Poincaré mappings in the spirit of [5, chap. 4].
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