Author: Apollonio, M.
Paper Title Page
MOPAB062 A Single Dipole Source for Broad-Band Soft Photon Beamlines in Diamond-II 261
 
  • M. Apollonio, G. Cinque, H. Ghasem, A.N. Jury, I.P.S. Martin, R. Rambo
    DLS, Harwell, United Kingdom
 
  Diamond-II is a project based at Diamond Light Source for an upgrade towards a Storage Ring characterized by a reduction of a factor 20 in its natural emittance and a doubling of the number of straight sections. At Diamond-II the majority of existing beamline capacity should be maintained, while enhancing their performance thanks to the increase in brightness at the source points. The substantial modification of the lattice imposes a likewise re-design of the broad-band sources, presently based on standard dipoles. In this paper we discuss a possible solution for the IR/THz beamline B22 operating within a photon energy range between 1meV and 1eV. This proposal, ideal for low critical energy and single source point sources, entails the insertion of a dipole in one of the newly created mid-cell straights of the machine, while reducing the bending power of the nearby gradient dipoles. After performing the linear matching of the lattice, reproducing a comparable phase advance in the modified cell, we studied the non-linear dynamics of the system. Comparison of the main observables (Dynamic Aperture, Injection Efficiency and Lifetime) with the baseline case is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB062  
About • paper received ※ 18 May 2021       paper accepted ※ 28 May 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB063 Commissioning Strategy for Diamond-II 265
 
  • M. Apollonio, R.T. Fielder, H. Ghasem, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  At Diamond Light Source we are working on the upgrade towards a machine aimed at a factor 20 reduction in emittance and an increase of the capacity for beamlines. Crucially the success of the programme depends on the ability to inject and capture the electrons in the storage ring, and finally reach control of beam alignment and the linear optics. The paper presents the series of strategies adopted to achieve the commissioning of the machine, from the threading procedure ensuring the first turn of the electron beam, to the orbit corrections in the storage ring. Beam based alignment of the quadrupoles and skew quadrupoles is illustrated and restoration of the linear optics (LOCO) for the storage ring is presented. Main performance parameters (Dynamic Apertures, Injection Efficiency and Lifetime) are calculated to evaluate the performance of the commissioned lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB063  
About • paper received ※ 18 May 2021       paper accepted ※ 28 May 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB128 Operational Use of Pinger Magnets to Counter Stored Beam Oscillations During Injection at Diamond Light Source 459
 
  • R.T. Fielder, M. Apollonio, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  Diamond uses a four kicker bump injection scheme. Due to a variety of factors it has become more difficult to perfectly match the four kicks while maintaining injection efficiency, resulting in some disturbance to the stored beam during top-up. This has consequences for beamlines which may see degraded beam quality during injections. A gating signal is provided, but this is not appropriate for all experiments, and in any case ideally would not be required. The disturbance to the stored beam can be partly controlled using the existing diagnostic pinger magnets installed in the storage ring. We present here a comparison of different compensation schemes and tests with beamlines, along with initial experiences operating during user beam time. Use of these magnet also provides proof of principle for any future, purpose-built compensation kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB128  
About • paper received ※ 18 May 2021       paper accepted ※ 20 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)