Author: Amorim, D.
Paper Title Page
MOPAB038 Robustness Studies and First Commissioning Simulations for the SOLEIL Upgrade Lattice 171
 
  • D. Amorim, A. Loulergue, L.S. Nadolski, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  Diffraction limited light sources will use very strong focusing elements to achieve their emittance goal. The beam will therefore be more sensitive to magnet field and alignment errors. Impact of errors on the lattice proposed for the SOLEIL upgrade was studied with the Accelerator Toolbox (AT) code. The performance achieved with the imperfect lattice will be presented. In particular the effect of girders misalignment was also accounted for. As the lattice uses a large number of permanent magnets for the beam bending as well as the focusing, challenges arise in terms of beam correction. The correctors and BPMs location and number will be investigated to maximize their efficiency, and corrector magnet strength required to obtain a closed orbit will be studied. The commissioning strategy, and in particular the method used to achieve the first turns and a stored beam in the machine will also be exposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB038  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB068 Collective Effects Studies for the SOLEIL Upgrade 274
 
  • A. Gamelin, D. Amorim, P. Brunelle, W. Foosang, A. Loulergue, L.S. Nadolski, R. Nagaoka, R. Ollier, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The SOLEIL upgrade project aims to replace the actual SOLEIL storage ring by a 4th generation light source. The project has just finished its conceptual design report (CDR) phase*. Compared to the SOLEIL storage ring, the upgraded storage ring design includes many new features of 4th generation light sources that will impact collective effects, such as reduced beam pipe apertures, a smaller momentum compaction factor and the presence of harmonic cavities (HC). To mitigate them, we rely on several damping mechanisms provided by the synchrotron radiation, the transverse feedback system, and the HC (Landau damping and bunch lengthening). This article presents a first estimate of the collective effects impact of the upgraded design.
* Conceptual Design Report: Synchrotron SOLEIL Upgrade, 2021, in press.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB068  
About • paper received ※ 17 May 2021       paper accepted ※ 02 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB054 CDR BASELINE LATTICE FOR THE UPGRADE OF SOLEIL 1485
 
  • A. Loulergue, D. Amorim, P. Brunelle, A. Gamelin, A. Nadji, L.S. Nadolski, R. Nagaoka, R. Ollier, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Previous MBA studies converged toward a lattice composed of 20 7BA solution elaborated by adopting the sextupole pairing scheme with dispersion bumps originally developed at the ESRF-EBS. It provided a low natural horizontal emittance value of 70-80 pm-rad range at an energy of 2.75 GeV. Due to difficulties to accommodate such lattice geometry in the SOLEIL present tunnel as well as to preserve at best the beamline positioning, alternative lattice based on HOA (Higher-Order Achromat) type cell has been recently investigated. The HOA type cell being more modular and possibly exhibiting larger momentum acceptance as well as low emittances, a solution alternating 7BA and 4BA cells was then identified as the best to adapt the current beamline positioning. The SOLEIL CDR upgrade reference lattice is then composed of 20 HOA cells alternating 7BA and 4BA giving a natural horizontal emittance of 80 pm-rad. The linear and non-linear beam dynamic properties of the lattice along with the possibility of horizontal off-axis injection at full betatron coupling are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB054  
About • paper received ※ 21 May 2021       paper accepted ※ 02 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)