Paper | Title | Page |
---|---|---|
THYYPLS2 | Different Versions of Cryogenic Current Comparators with Magnetic Core for Beam Current Measurements | 3431 |
|
||
For more than 20 years Cryogenic Current Comparators (CCC) are used to measure the current of charged particle beams with low intensity (nA-range). The device was first established at GSI in Darmstadt and was improved over the past two decades by the cooperation of institutes in Jena, GSI and CERN. The improved versions differ in material parameters and electronics to increase the resolution and in dimensions in order to meet the requirements of the respective application. The device allows non-destructive measurements of the charged particle beam current. The azimuthal magnetic field which is generated by the beam current is detected by low temperature Superconducting Quantum Interference Device (SQUID) current sensors. A complex shaped superconductor cooled down to 4.2 K is used as magnetic shielding and a high permeability core serves as flux concentrator. Three versions of the CCC shall be presented in this work: (1) GSI-Pb-CCC which was running at GSI Darmstadt in a transfer line, (2) CERN-Nb-CCC currently installed in the Antiproton Decelerator at CERN and (3) GSI-Nb-CCC-XD which will be operating in the CRYRING at GSI 2019. Noise, signal and drift measurements were performed in the Cryo-Detector Lab at the University of Jena. | ||
![]() |
Slides THYYPLS2 [4.344 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS2 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGW096 | Beam Dynamics in MBA Lattices with Different Chromaticity Correction Schemes | 346 |
SUSPFO115 | use link to see paper's listing under its alternate paper code | |
|
||
Ultra-low emittance lattices are being studied for the future upgrade of the 2.75 GeV SOLEIL storage ring. The candidate baseline lattice was inspired by the ESRF-EBS-type Multi-Bend-Achromat (MBA) lattice, introducing a (-I) transformation to compensate the nonlinear impact of sextupoles thanks to the lattice symmetry and tight control of the betatron phase advance between sextupoles. Whilst the final performance is still being optimized, other types of lattices are being considered for SOLEIL: This includes the so-called High-Order Achromat (HOA) lattice. Though the (-I) scheme provides a large on-momentum transverse dynamic aperture in 4D, its off-momentum performance is rather limited. 6D studies reveal intrinsic off-momentum transverse oscillations which are likely to result from a nonlinear increase in path length. This contribution presents the effects from the inhomogeneous sextupole distribution in the (-I) scheme and compares them with the HOA lattice. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW096 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB065 | Enhancing Experimental Prospects With Low Energy Antiprotons | 727 |
|
||
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 721559. The Extra Low Energy Antiproton ring (ELENA) is a critical upgrade to the Antiproton Decelerator (AD) at CERN and saw the first beam in 2018. ELENA will significantly enhance the achievable quality of low energy antiproton beams and enable new experiments. To fully exploit the potential of this new facility, advances are required in numerical tools that can adequately model beam transport, life time and interaction, beam diagnostics tools and detectors to fully characterize the beam’s properties, as well as in novel experiments that take advantage of the enhanced beam quality that ELENA can provide. These research areas are in the heart of the pan-European research and training network AVA (Accelerators Validating Antimatter physics) which started in 2017. This contribution presents research results within AVA on the performance of ultra-thin diamond membranes, electron cooling and beam life time studies of low energy ion and antiproton beams, as well as efficient integration and performance optimization of cryogenic detectors in ELENA and associated trap experiments. These results are used to describe the optimum layout of a state-of-the-art low energy antiproton facility and associated experiments. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB065 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS066 | Re-optimisation of the ALICE Gun Upgrade Design for the 500-pC Bunch Charge Requirements of PERLE | 2071 |
SUSPFO116 | use link to see paper's listing under its alternate paper code | |
|
||
The injector for PERLE, a planned ERL test facility, must be capable of delivering 500 pC bunches at a repetition rate of 40.1 MHz to provide a beam with 20 mA average current with a projected rms emittance of less than 6 mm mrad. This must be achieved at two different operational voltages 350 kV and 220 kV for unpolarised and polarised operation respectively. The PERLE injector will be based on an upgrade of a DC photocathode electron gun operated previously at ALICE ERL at Daresbury. The upgrade will add a load lock system for photocathode interchange. This paper presents the results of a re-optimisation of the electrode system as ALICE operated with a bunch charge of around 80 pC while PERLE needs a bunch charge of 500 pC. This re-optimisation was done using the many-objective genetic algorithm NSGAIII to minimise both the slice emittance and transverse beam size for both required operational voltages. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS066 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW090 | Emittance Evolution of Low Energy Antiproton Beams in the Presence of Deceleration and Cooling | 2697 |
|
||
The commissioning of the Extra Low Energy Antiproton (ELENA) ring has been completed before the start of the second long shutdown (LS2) at CERN. First beams to an experiment in a new experimental zone have as well already been delivered. ELENA will begin distributing 100 keV cooled antiproton beams to all antimatter experiments in 2021. This contribution presents measurements made using a novel scraping algorithm capable of determining the emittance of non-Gaussian beams in the presence of dispersive effects. The emittance is sampled during various sections of the ELENA deceleration cycle, investigating the efficiency of the electron cooler and extracting additional information from the beam. The electron cooler is shown to effectively reduce the transverse phase space after blow-up during deceleration. The beam is characterised before extraction for the purpose of tracking and optimisation of the new electrostatic transfer lines currently being installed. Finally, the application of the scraping algorithm to other machines with a scraper located in a dispersive region is discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW090 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW093 | Commissioning of the Prototype for a New Gas Curtain Beam Profile Monitor Using Beam Induced Fluorescence for HL-LHC | 2709 |
|
||
Funding: This work is supported by the HLLHCUK project and the STFC Cockcroft Institute core grant No. ST/G008248/1. A new supersonic gas-jet curtain based beam profile monitor is under development for minimally invasive simultaneous transverse profile diagnostics of proton and electron beams, at pressures compatible with LHC. The monitor makes use of a thin gas-jet curtain angled at 45 degrees with respect to the charged particle beams. The fluorescence caused by the interaction between the curtain and the beam can then be detected using a dedicated imaging system to determine its transverse profile. This contribution details design features of the monitor, discusses the gas-jet curtain formation and presents various experimental tests, including profile measurements of an electron beam using nitrogen and neon curtains. The gas-jet density was estimated by correlating it with the number of photons detected by the camera. These measurements are then compared with results obtained using a movable pressure gauge. This monitor has been commissioned in collaboration with CERN, GSI and the University of Liverpool. It serves as a first prototype of a final design that will be placed in the LHC beam line to measure the profile of the proton beam. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW093 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW095 | Coherent Transition Radiation Spatial Imaging as a Bunch Length Monitor | 2713 |
|
||
Funding: This work was supported by the EU under Grant Agreement No. 624890 and the STFC Cockcroft Institute core Grant No. ST/G008248/1. High-resolution bunch length measurement is a key component in the optimisation of beam quality in FELs, storage rings, and plasma-based accelerators. Simulations have shown that the profile of a coherent transition radiation (CTR) image produced by a charged particle beam is sensitive to bunch length and can thus be used as a diagnostic. This contribution presents the development progress of a novel bunch length monitor based on imaging the spatial distribution of CTR. Due to the bunch lengths studied, 10fs-100fs FWHM, the radiation of interest was in the THz range. This led to the development of a THz imaging system, which can be applied to both high and low energy electron beams. The associated benefits of this imaging distribution methodology over the typical angular distribution measurement are discussed. Building upon preliminary multi-shot proof of concept results last year, a new series of experiments have been conducted in the short pulse facility (SPF) at MAX IV. Single-shot measurements have been used to measure the exact point of maximum compression. Analysis from the proof of concept results last year, and initial results from the new measurements this year are discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW095 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW096 | Development of Supersonic Gas-Sheet-Based Beam Profile Monitors | 2717 |
|
||
Funding: HL-LHC project funded by STFC and CERN, and the STFC Cockcroft core grant No. ST/G008248/1. Non-destructive beam profile monitoring is very desirable, essentially for any particle accelerator but particularly for high-energy and high-intensity machines. Supersonic gas jet-based monitors, detecting either the ionization or fluorescence of a gas sheet interacting with the primary beam to be characterized, allow for minimally invasive measurements. They can also be used over a wide energy range, from keV to TeV beams. This contribution gives an overview of the jet-based ionization and fluorescence beam profile monitors which have been developed, built and tested at the Cockcroft Institute. It discusses gas sheet generation, vacuum considerations, choice of gas species and detection methods. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW096 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS060 | Multi-objective Optimization of 3D Beam Tracking in Electrostatic Beamlines | 3263 |
|
||
Funding: *This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559. After CERN’s Long Shutdown 2 (LS2) the Extra Low Energy Antiproton (ELENA) ring will begin providing extremely low energy (100 keV) antiproton beams to the antimatter experiments in the AD hall. To allow for simultaneous operation and guarantee maximum efficiency, all transfer lines will be based on electrostatic optics and short pulse (∼100 ns) deflectors. Currently, only a limited number of simulation codes allow a realistic representation of these elements, limiting the capabilities for beam quality optimization. In this contribution methods for modelling realistic electrostatic optical elements and perform 3D tracking studies through these are presented. A combination of finite element methods and experimental measurements are used along with a modified version of the G4Beamline and BMAD codes. Multi-objective optimization techniques are then applied to optimize beam transfer and beam quality at various points along the transfer lines. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS060 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS106 | Accelerator Optimization using Big Data Science Techniques | 3370 |
|
||
Funding: This project has received funding from STFC under grant reference ST/P006752/1. Managing, analyzing and interpreting large, complex datasets and high rates of data flow is a growing challenge for many areas of science and industry. At particle accelerators and light sources, this data flow occurs both, in the experiments as well as the machine itself. The Liverpool Big Data Science Center for Doctoral Training (LIV. DAT) was established in 2017 to tackle the challenges in Monte Carlo modelling, high performance computing, machine learning and data analysis across particle, nuclear and astrophysics, as well as accelerator science. LIV. DAT is currently training 24 PHD students, making it one of the largest initiatives of this type in the world. This contribution presents research results obtained to date in projects that focus on the application of big data techniques within accelerator R&D. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS106 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS107 | Designing the European Spallation Source Tuning Dump Beam Imaging System | 3374 |
|
||
Funding: In-Kind Agreement, ESS/Norway The first section of the European Spallation Source (ESS) to receive high-energy protons when live operation begins will be the Tuning Dump beam-line. The dump line will be used during accelerator commissioning to tune the linac, and must accept the full range of ESS energies up to 2 GeV, from 5µs probe pulse to full 2.86ms pulse length, and beam sizes up to the 250 mm limit of the physical aperture, although the allowed pulse rate will be restricted by the thermal capacity of the dump. An imaging system has been developed to view remotely the transverse beam profile in the section immediately before the dump entrance, using insertable scintillator screens. This contribution presents the principal design parameters for this system, with particular reference to the techniques used in assessing the radiation and thermal environments and their impact on the selection of locations for the imaging cameras, and the specification of the mechanical screen actuators. The predicted optical performance of the system is also summarised. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS107 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMP033 | Beam Characterisation Using MEDIPIX3 and EBT3 Film at the Clatterbridge Proton Therapy Beamline | 3510 |
SUSPFO110 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: EU FP7 grant agreement 215080, H2020 Marie Skłodowska-Curie grant agreement No 675265 - Optimization of Medical Accelerators (OMA) project and the Cockcroft Institute core grant STGA00076-01. The Clatterbridge Cancer Centre (CCC) in the UK is a particle therapy facility providing treatment for ocular cancers using a 60 MeV passively scattered proton therapy beam. A model of the beamline using the Monte Carlo Simulation toolkit Geant4 has been developed for accurate characterisation of the beam. In order to validate the simulation, a study of the beam profiles along the delivery system is necessary. Beam profile measurements have been performed at multiple positions in the CCC beam line using both EBT3 GAFchromic film and Medipix3, a single quantum counting chip developed specifically for medical applications, typically used for x-ray detection. This is the first time its performance has been tested within a clinical, high proton flux environment. EBT3 is the current standard for conventional radiotherapy film dosimetry and was used to determine the dose and for correlation to fluence measured by Medipix3. The count rate linearity and doses recorded with Medipix3 were evaluated across the full range of available beam intensities, up to 3.12 x 1010 protons/s. The applicability of Medipix3 for proton therapy dosimetry is discussed and compared against the performance of EBT3. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP033 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMP042 | Performance Optimization of Ion Beam Therapy | 3537 |
|
||
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 675265. Proton beam therapy promises significant advantages over other forms of radiation therapy. However, to assure the best possible cancer care for patients further R&D into novel beam imaging and patient diagnostics, enhanced biological and physical models in Monte Carlo codes, as well as clinical facility design and optimization is required. Within the pan-European Optimization of Medical Accelerators (OMA) project collaborative research is being carried out between universities, research and clinical facilities, and industry in all of these areas. This contribution presents results from studies into low-intensity proton beam diagnostics, prompt gamma-based range verification in proton therapy, as well as prospects for a new proton irradiation facility for radiobiological measurements at an 18 MeV cyclotron within OMA. These results are then connected to the wider project aims of enhancing ion beam therapy. A summary of past and future events organised by the OMA consortium is also given. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP042 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMP043 | Non-Invasive Beam Monitoring Using LHCb VELO With 40 MeV Protons | 3541 |
|
||
Funding: EU grant agreements 215080 and 675265, the Cockcroft Institute core Grant (ST/G008248/1), national agency: MNiSW and NCN (UMO-2015/17/B/ST2/02904) and the Grand Challenge Network+ (EP/N027167/1). In proton beam therapy, knowledge of the detailed beam properties is essential to ensure effective dose delivery to the patient. In clinical practice, currently used interceptive ionisation chambers require daily calibration and suffer from slow response time. This contribution presents a new non-invasive method for dose online monitoring. It is based on the silicon multi-strip sensor LHCb VELO (VErtex LOcator), developed originally for the LHCb experiment at CERN. The semi-circular detector geometry offers the possibility to measure beam intensity through halo measurements without interfering with the beam core. Results from initial tests using this monitor in the 40 MeV proton beamline at the University of Birmingham, UK are shown. Synchronised with an ionisation chamber and the RF cyclotron frequency, VELO was used as online monitor by measuring the intensity in the proton beam halo and using this information as basis for 3D beam profiles. Experimental results are discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP043 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW026 | Status of the Horizon 2020 EuPRAXIA Conceptual Design Study | 3638 |
|
||
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782. The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW072 | Seeded Self-Modulation of Transversely Asymmetric Long Proton Beams in Plasma | 3757 |
|
||
Funding: This work is supported by Science and Technology Facilities Council grant ST/P006752/1. The AWAKE experiment at CERN recently demonstrated the world’s first acceleration of electrons in a proton-driven plasma wakefield accelerator*. Such accelerators show great promise for a new generation of linear e-p colliders using ~1-10 GV/m accelerating fields. Effectively driving a wakefield requires 100-fold self-modulation of the 12 cm Super Proton Synchrotron (SPS) proton beam using a plasma-driven process which must be care-fully controlled to saturation. Previous works have modelled this process assuming azimuthal symmetry of the transverse spatial and momentum profiles **, ***. In this work, 3D particle-in-cell simulations are used to model the self-modulation of such non-round beams. Implications of such effects for efficiently sustaining resonant wakefields are examined. * Adli, E., et. al. (2018). Nature, 561(7723), 363-367. ** Lotov, K. V. (2015). Physics of Plasmas, 22(10), 103110. *** Schroeder, C. B., et. al. (2011). Phys. Rev. Lett., 107(14). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW072 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGW094 | First Machine Developments Result with HL-LHC Crab Cavities in the SPS | 338 |
|
||
Crab cavities are a critical component within the High Luminosity upgrade project for the Large Hadron Collider (HL-LHC). It is foreseen to use crab cavities in order to compensate the geometric luminosity reduction factor (reduction of the luminous region at the Interaction Point [IP]) due to the beam crossing angle (required for minimizing the impact of the long range beam-beam effects on the single particle beam dynamics) and increase the number of collisions per bunch crossing. In 2018 the first beam tests of crab cavities with protons were performed in the Super Proton Synchrotron (SPS) at CERN. Two vertical superconducting cavities of the Double Quarter Wave (DQW) type were fabricated and installed in the SPS to verify some key components of the cavity design and operation. This paper will present some of the first results relating to the proton beam dynamics in the presence of crab cavities. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW094 | |
About • | paper received ※ 25 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW008 | PERLE: A High Power Energy Recovery Facility | 1396 |
|
||
PERLE is a proposed high power Energy Recovery Linac, designed on multi-turn configuration, based on SRF technology, to be hosted at Orsay-France in a col-laborative effort between local laboratories: LAL and IPNO, together with an international collaboration involv-ing today: CERN, JLAB, STFC ASTeC Daresbury, Liverpool University and BINP Novosibirsk. PERLE will be a unique leading edge facility designed to push advances in accelerator technology, to provide intense and highly flexible test beams for component development. In its final configuration, PERLE provides a 500 MeV elec-tron beam using high current (20 mA) acceleration during three passes through 801.6 MHz cavities. This presenta-tion outlines the technological choices, the lattice design and the main component descriptions. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW008 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZZPLS2 | EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality | 2291 |
|
||
Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782 The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized. *- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285 |
||
![]() |
Slides WEZZPLS2 [5.157 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2 | |
About • | paper received ※ 12 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |