Author: Vossberg, M.
Paper Title Page
MOPGW024 Measurements of the GSI Transfer Beam Lines Ion Optics 131
 
  • M. Sapinski, O. Geithner, S. Reimann, P. Schütt, M. Vossberg, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • C. Heßler
    CERN, Meyrin, Switzerland
 
  GSI High Energy Beam Transfer lines (HEST) link the SIS18 synchrotron with two storage rings (Experimental Storage Ring and Cryring) and six experimental caves. The recent upgrades to HEST beam instrumentation enables precise measurements of beam properties along the lines and allow for faster and more precise beams setup on targets. Preliminary results of some of the measurements performed during runs in 2018 and 2019 are presented here. The focus is on response matrix measurements and quadrupole scans performed on HADES beam line. The errors and future improvements are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW024  
About • paper received ※ 15 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS020 Status of the FAIR Proton LINAC 889
 
  • C.M. Kleffner, S. Appel, R. Berezov, J. Fils, P. Forck, P. Gerhard, M. Kaiser, K. Knie, A. Krämer, C. Mühle, S. Puetz, A. Schnase, G. Schreiber, A. Seibel, T. Sieber, V. Srinivasan, J. Trüller, W. Vinzenz, M. Vossberg, C. Will
    GSI, Darmstadt, Germany
  • H. Hähnel, U. Ratzinger, M. Schuett, M. Syha
    IAP, Frankfurt am Main, Germany
 
  For the production of Antiproton beams with sufficient intensities, a dedicated high-intensity 325 MHz Proton linac is currently under construction. The Proton linac shall deliver a beam current of up to 70 mA with an energy of 68 MeV for injection into SIS18. The source is designed for the generation of 100 mA beams. The Low-Energy Beam Transport line (LEBT) contains two magnetic solenoid lenses enclosing a diagnostics chamber, a beam chopper and a beam conus. A ladder 4-Rod RFQ and six normal conducting crossbar cavities of CCH and CH type arranged in two sections accelerate the beam to the final energy of 68 MeV. The technical design of the DTL CH cavities are presented and the commissioning measurements of the ion source are described. The construction and the procurement progress, the design and testing results of the key hardware are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS020  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS036 RFQ Electrodes Change and Upgrade Option at the UNILAC HSI Injector 936
 
  • M. Vossberg, P. Gerhard, L. Groening, S. Mickat, H. Vormann, C. Xiao
    GSI, Darmstadt, Germany
  • V. Bencini, J.M. Garland, J.-B. Lallement, A.M. Lombardi
    CERN, Meyrin, Switzerland
 
  In order to meet the beam intensity and quality requirements imposed by FAIR, the HSI-RFQ beam dynamics originally dating from 2009 has been re-designed recently at CERN. Front-to-end simulations demonstrated that the new design meets the FAIR targets. Implementation of the new electrodes, initially planned for 2019, will require re-adaption of the RFQ cavity rf-parameters by re-shaping the stems that keep the electrodes. However, during the beam time 2018 the existing RFQ did not reach its nominal voltage most likely due to expired lifetime of the electrodes originating from 2009. In order to shorten the RFQ maintenance period and to minimize any risk for upcoming beam time 2019, it was decided to post-pone the implementation of the new design and rather just re-producing the 2009 design electrodes. This contribution is on the re-production process as short-term solution and on the full implementation of the new design as mid-term solution. CST simulations performed at GSI assure that the resonance frequency with the new electrode geometry is recuperated through corrections of the carrier rings. The status of the exchange of the electrodes and simulations for the adaptation of the new electrode design are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS036  
About • paper received ※ 13 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS037 Comparison Between Measurement and Simulation of a Full Scale Prototype for the Proton Injector at FAIR 940
 
  • A. Seibel, C.M. Kleffner, K. Knie, M. Vossberg
    GSI, Darmstadt, Germany
  • U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  A dedicated 68 MeV, 70 mA proton injector is required for the research program at FAIR (Facility for Antiproton and Ion Research). This 325 MHz linear injector contains a RFQ and six CH structures. The CH (Crossbar H-mode) structures are working in the H210 mode. The main acceleration of this room temperature linac will be provided by the CH structures. For the second acceleration from 11.5 MeV to 24.2 MeV a full scale prototype has been built. This structure consists of two individual CH resonators and a coupling cell. Inside the structure there are 17 tuners, they have an impact on the electric field and the frequency. For operation a flat field is required, therefore this tuners must be correctly positioned. Some series of low level tuning and frequency measurements were done to determine the size of the tuners. Low level measurements and simulations will be compared and presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS037  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)