Author: Shang, L.
Paper Title Page
TUPTS046 Commissioning of a Compact THz Source Based on FEL 2030
 
  • Y.J. Pei, G. Feng, X.Y. He, Y. Hong, D. Jia, P. Lu, S. Lu, L. Shang, B.G. Sun, Zh.X. Tang, W. Wang, X.Q. Wang, W. Wei
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • L. Cao, Q.S. Chen, Q. Fu, T. Hu, P. Tan, Y.Q. Xiong
    HUST, Wuhan, People’s Republic of China
  • G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People’s Republic of China
 
  The layout of the THz source based on FEL was de-scribed in this paper. The THz source was based on a FEL which was composed of a compact 8-14MeV LINAC, undulator, optical resonance, THz wave measurement system and so on. The facility was designed in 2013 and the typical running parameter got in 2017 were as the following: energy is of 12.7MeV, energy spread is of 0.3%, macro-pulse is of 4 μs, pulse length of micro-pulse is of 6ps, emittance is of 24 mm.mrad. After that the ma-chine was commissioning for production THz radiation. In November 2018, the THz wave was test and got THz wave signal, the spectrum was also got. This year, we plan to measure the output power of the THz source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS046  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP015 Status of the R&D for HALS Injection System 2335
 
  • L. Shang, W. Liu, Y. Lu, F.L. Shang, W.B. Song, Z.B. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Hefei Advanced Light Source (HALS) is a diffraction-limited synchrotron radiation source proposed by the NSRL. A comprehensive R&D program funded by the local government was initiated in the end of 2017. The program focuses on the key technologies including the injection, magnets, vacuum, mechanics, RF, etc. The formal construction of HALS is estimated to begin in 2020. This paper presents the R&D of the injection system, including the fast kicker, nanosecond pulser, NLK (non-linear kicker) and the septum magnet. Test results of the prototype fast kicker, pulsed power and the NLK are given and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP015  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP016 The Design and Preliminary Test of a Stripline Kicker for HALS 2338
 
  • W. Liu, F.L. Shang, L. Shang, W.B. Song, Z.B. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Stripline kicker is an important components of both on-axis longitudinal accumulation and on-axis swap out injection schemes in HALS (Hefei Advanced Light Source). After more than one year of R&D, construction of the first prototype is completed. The kicker performance is simulated by CST. The results show that in the range of 0~1GHz, on differential mode, S11 is less than - 23.7dB. In order to facilitate installation, the extension part and PTFE bracket were designed. The assembly of kicker and feedthrough has been tested with pulse generator and network analyser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP016  
About • paper received ※ 25 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP017 A New Nonlinear Kicker Design and Measurement 2342
 
  • W.B. Song, W. Liu, Y. Lu, F.L. Shang, L. Shang, Z.B. Sun
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China(2016YFA0402000) and Pre-research Project of Hefei Advanced Light Source
For the beam injection of HALS, a feasible injection scheme is proposed and a single-pulse nonlinear kicker has been designed for off-axis injection. The kicker has been improved on the basis of the previous designed one, and the structure of the kicker was simulated by OPERA, and the prototype has been processed and measured. The results showed that the kicker designed in this paper has less influence on stored beam and lower difficulty in location.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP017  
About • paper received ※ 26 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)