Author: Schulte, D.
Paper Title Page
MOPGW071 Resistive Wall Effects in the CLIC Beam Delivery System 258
 
  • D. Arominski, A. Latina, D. Schulte
    CERN, Meyrin, Switzerland
 
  Resistive wall wakefields are an important issue to study for future linear colliders. Wakefields in the Beam Delivery System (BDS) might cause severe multi-bunch effects, leading to beam quality and luminosity losses. The resistive wall effects depend on the beam pipe apertures and materials, which are optimised to limit the impact on the beam. This paper presents a study of this problem for the 380 GeV and 3 TeV beam parameters and optics of the Compact Linear Collider’s BDS. First, the optimisation of the beam pipe apertures to limit the impact of resistive wall effect on the beam quality is shown, then the luminosity and its quality are presented. Finally, the proposed design parameters are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW071  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW081 Measurements of Stray Magnetic Fields at CERN for CLIC 289
SUSPFO099   use link to see paper's listing under its alternate paper code  
 
  • C. Gohil, N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • B. Heilig
    MFGI, Budapest, Hungary
 
  Simulations have shown that the Compact Linear Collider (CLIC) is sensitive to external dynamic magnetic fields (stray fields) to the nT level. Magnetic fields are not typically measured to this precision at CERN. Past measurements of the background magnetic field at CERN are limited. In this paper new measurements are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW081  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW082 Mitigation of Stray Magnetic Field Effects in CLIC with Passive Shielding 293
 
  • C. Gohil, N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
 
  Simulations have shown the Compact Linear Collider (CLIC) is sensitive to external dynamic magnetic fields (stray fields) to the nT level. Due to these extremely tight tolerances, mitigation techniques will be required to prevent performance loss. A passive shielding technique is envisaged as a potential solution. A model for passive shielding is presented along with calculations of its transfer function. Measurements of the transfer function of a promising material (mu-metal) that can be used for passive shielding are presented. The validity of passive shielding models in small amplitude magnetic fields is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW082  
About • paper received ※ 01 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP001 Optic Corrections for FCC-hh 417
 
  • D. Boutin
    CEA-DRF-IRFU, France
  • A. Chancé, B. Dalena
    CEA-IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, D. Schulte
    CERN, Meyrin, Switzerland
 
  The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The evaluation of the various magnets mechanical error and field error tolerances in the arc sections of FCC-hh, as well as an estimation of the required correctors strengths, are important aspects of the collider design. In this study the mechanical tolerances, dipole and quadrupole field error tolerances for the arc sections of FCC-hh are evaluated. The consolidated correction schemes of the linear coupling (with skew quadrupoles) and of the beam tunes (with normal quadrupoles) are presented. The integration of the different ring insertions (interaction region, collimation, injection, etc) is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP001  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP004 Consolidated Lattice of the Collider FCC-hh 428
 
  • A. Chancé, D. Boutin, B. Dalena
    CEA-IRFU, Gif-sur-Yvette, France
  • W. Bartmann, M. Hofer, R. Martin, D. Schulte
    CERN, Meyrin, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 654305.
The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The latest changes brought to the lattice of the FCC-hh collider are commented: impact of the new intra-beam distance, efforts to increase the beam stay clear in the dispersion suppressors, tuning procedures, and updates on the insertions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP004  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP005 Field Quality for the Hadron Option of Future Circular Collider 4397
 
  • B. Dalena, D. Boutin
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Chancé
    CEA-DRF-IRFU, France
  • E. Cruz Alaniz
    The University of Liverpool, Liverpool, United Kingdom
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union’s H2020 Framework Program under grant agreement No. 654305.
The updated field quality for the baseline design option of the Nb3Sn dipoles for Future Circular Collider (FCC-hh) is discussed. The impact on the expected dynamic aperture is shown at injection and collision energy and the consequent non-linear correction schemes together with their integration in the optics are defined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP005  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP016 Intra-Bunch Energy Spread Minimisation for CLIC Operation at a Centre-of-Mass Energy of 350 GeV 458
 
  • N. Blaskovic Kraljevic, D. Arominski, D. Schulte
    CERN, Meyrin, Switzerland
 
  The first stage of the electron-positron Compact Linear Collider (CLIC) is designed with a centre-of-mass energy of 380 GeV. A dedicated threshold scan in the vicinity of 350 GeV is envisioned with a total integrated luminosity of 100 fb-1. This scan calls for a very small intra-bunch energy spread in order to achieve an excellent collision energy resolution. This paper presents an optimised assignment of RF accelerating gradients and phases in the CLIC main linac for operation at 350 GeV, which minimises the energy spread at the end of the main linac whilst preserving a small emittance growth. Variation of the bunch length and charge is studied in order to further reduce the energy spread; the effect on both the peak and total luminosity is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP016  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP017 Beam Orbit Correction in the CLIC Main Linac Using a Small Subset of Correctors 461
 
  • N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
 
  Beam orbit correction in future linear colliders, such as the Compact Linear Collider (CLIC), is essential to mitigate the effect of accelerator element misalignment due to ground motion. The correction is performed using correctors distributed along the accelerator, based on the beam position monitor (BPM) readout from the preceding bunch train, with a train repetition frequency of 50 Hz. This paper presents the use of the MICADO algorithm* to select a subset of N ~ 10 correctors (from a total of 576) to be used for orbit correction in the designed 380 GeV centre-of-mass energy first-stage of CLIC. The optimisation of the number N of correctors, the algorithm’s gain and the corrector step size is described, and the impact of a number of BPMs and correctors becoming unavailable is addressed. The application of a MICADO algorithm to perform dispersion free steering, by reducing the beam orbit difference between two beams with different energies, is discussed.
* B. Autin & Y. Marti, "Closed orbit correction of A.G. machines using a small number of magnets", CERN-ISR-MA/73-17, 1973.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP017  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP018 Beam-Based Beamline Element Alignment for the Main Linac of the 380 GeV Stage of CLIC 465
 
  • N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
 
  The extremely small vertical beam size required at the interaction point of future linear colliders, such as the Compact Linear Collider (CLIC), calls for a very small vertical emittance. The strong wakefields in the high frequency 12 GHz CLIC accelerating structures set tight tolerances on the alignment of the main linac’s beamline elements and on the correction of the beam orbit through them in order to mantain a small emittance growth. This paper presents the emittance growth due to each type of beamline element misalignment in the designed 380 GeV centre-of-mass energy first-stage of CLIC, and the emittance growth following a series of beam-based alignment (BBA) procedures. The BBA techniques used are one-to-one steering, followed by dispersion free steering and finally accelerating structure alignment using wakefield monitors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP018  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP034 Tuning Studies of the CLIC 380 Gev Final Focus System 512
 
  • J. Ögren, A. Latina, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  We present tuning studies of the Compact Linear Collider final-focus system under static imperfections including transverse misalignments, roll errors and magnetic strength errors. The tuning procedure consists of beam-based alignment for correcting the linear part of the system followed by sextupole pre-alignment and use of multipole tuning knobs. The sextupole pre-alignment is very robust and allows the tuning time to be greatly reduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP034  
About • paper received ※ 06 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP038 Investigation of CLIC 380 GeV Post-Collision Line 528
 
  • R.M. Bodenstein, A. Abramov, S.T. Boogert, P. Burrows, L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
  • D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  It has been proposed that the Compact Linear Collider (CLIC) be commissioned in stages, starting with a lower-energy, 380 GeV version for the first stage, and concluding with a 3 TeV version for the final stage. In the Conceptual Design Report (CDR) published in 2012, the post-collision line is described for the 3 TeV and 500 GeV stages. However, the post-collision line for the 380 GeV design was not investigated. This work will describe the simulation studies performed in BDSIM for the 380 GeV post-collision line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP038  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB048 Collimation System Studies for the FCC-hh 669
 
  • R. Bruce, A. Abramov, A. Bertarelli, M.I. Besana, F. Carra, F. Cerutti, M. Fiascaris, G. Gobbi, A.M. Krainer, A. Lechner, A. Mereghetti, D. Mirarchi, J. Molson, M. Pasquali, S. Redaelli, D. Schulte, E. Skordis, M. Varasteh Anvar
    CERN, Meyrin, Switzerland
  • A. Abramov
    JAI, Egham, Surrey, United Kingdom
  • A. Faus-Golfe
    LAL, Orsay, France
  • M. Serluca
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  The Future Circular Collider (FCC-hh) is being designed as a 100 km ring that should collide 50 TeV proton beams. At 8.3 GJ, its stored beam energy will be a factor 28 higher than what has been achieved in the Large Hadron Collider, which has the highest stored beam energy among the colliders built so far. This puts unprecedented demands on the control of beam losses and collimation, since even a tiny beam loss risks quenching superconducting magnets. We present in this article the design of the FCC-hh collimation system and study the beam cleaning through simulations of tracking, energy deposition, and thermo-mechanical response. We investigate the collimation performance for design beam loss scenarios and potential bottlenecks are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB048  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB032 The CompactLight Design Study Project 1756
 
  • G. D’Auria, S. Di Mitri, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Aicheler
    HIP, University of Helsinki, Finland
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • R. Apsimon, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • A. Bernhard, J. Gethmann
    KIT, Karlsruhe, Germany
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • M. Calvi, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • H.M. Castaneda Cortes, J.A. Clarke, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • G. Dattoli, F. Nguyen, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • R.T. Dowd, D. Zhu
    AS - ANSTO, Clayton, Australia
  • W.D. Fang
    SINAP, Shanghai, People’s Republic of China
  • A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • E.N. Gazis, N. Gazis
    National Technical University of Athens, Zografou, Greece
  • R. Geometrante, M. Kokole
    KYMA, Trieste, Italy
  • V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • X.J.A. Janssen, J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
  • J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • G. Taylor
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint,  as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB113 Toolbox for Optimization of RF Efficiency for Linacs 3074
 
  • J. Ögren, A. Latina, D. Schulte
    CERN, Meyrin, Switzerland
 
  We present a toolbox for optimizing the rf efficiency for linacs and as an example we use it to re-optimize the Compact Linear Collider booster linac. We have implemented a numerical model of a SLED-type pulse compressor that can generate a single or a double pulse. Together with the CERN CLICopti library, an RF structure parameter estimator, we created the toolbox which enables thorough optimizations of linacs in terms of RF efficiency, beam stability, and cost simultaneously, via a simple and concise Octave script. This toolbox was created for the optimization of X-band-based linacs, however it can also be used at lower frequencies, e.g. in the S- and in the C- bands of frequencies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB113  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS081 An Analytic Approach to Emittance Growth from the Beam-Beam Effect with Applications to the LHeC 3307
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript.
In colliders with asymmetric rigidity such as the proposed Large Hadron electron Collider, jitter in the weaker beam can cause emittance growth via coherent beam-beam interactions. The LHeC in this case would collide 7 TeV protons on 60 GeV electrons, which can be modeled using a weak-strong model. In this work we estimate the proton beam emittance growth by separating out the longitudinal angular kicks from an off-center bunch interaction and produce an analytic expression for the emittance growth per turn in systems like the LHeC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS081  
About • paper received ※ 01 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS104 Synchrotron Radiation Reflections in the CLIC Beam Delivery System 3363
SUSPFO017   use link to see paper's listing under its alternate paper code  
 
  • D. Arominski, A. Latina, A. Sailer, D. Schulte
    CERN, Meyrin, Switzerland
 
  Synchrotron radiation (SR) reflection is an important issue for future linear colliders. High fluxes of the SR might impact the performance of the detector, through irradiation of the forward luminosity and beam quality calorimeters or of the innermost layers of the vertex detector. The photon reflections depend on the beam pipe apertures’ size, their shape, and materials used with various surface roughness. In this work, we present a study of SR including reflection for the 380 GeV and 3 TeV beam parameters and optics of the Compact Linear Collider’s Final Focus System. The simulations of the SR reflections using the Synrad+ software are presented and the impact on the detector is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS104  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)