Paper | Title | Page |
---|---|---|
MOPMP037 | Updated High-Energy LHC Design | 524 |
|
||
Funding: This work was supported in part by the European Commission under the HORIZON 2020 project ARIES no.730871, and by the Swiss Accelerator Research and Technology collaboration CHART. We present updated design parameters for a future High-Energy LHC. A more realistic turnaround time has led to a revision of the target peak luminosity, as well as a choice of a larger IP beta function, and longer physics fills. Pushed parameters of the Nb3Sn superconducting cable together with a modified layout of the 16 T dipole magnets resulted in revised field errors, updated dynamic-aperture simulations, and an associated re-evaluation of injector options. Collimators in the dispersion suppressors help achieve satisfactory cleaning performance. Longitudinal beam parameters ensure beam stability throughout the cycle. Intrabeam scattering rates and Touschek lifetime appear benign. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP037 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYPLS1 | Building the Impedance Model of a Real Machine | 2249 |
|
||
A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider). The main phases to create a realistic impedance model, and verify it experimentally, will be reviewed, highlighting the main challenges. Some examples will be presented revealing the levels of precision of machine impedance models that have been achieved. | ||
![]() |
Slides WEYPLS1 [5.648 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLS1 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP041 | Damping Bunch Oscillations Due to Off-Axis Injection | 2422 |
|
||
Funding: This work was supported by the European Commission under the HORIZON 2020 project ARIES, grant agreement no. 730871. In the FCC-ee pre-injector complex, a slightly modified SPS can serve as pre-booster. The baseline design foresees injecting the low-emittance electron and positron bunches off-axis into the SPS, and deploying strong wigglers to greatly enhance the radiation damping at the injection energy. We here compare the damping of large injection oscillations by means of radiation damping with the effect of other possible damping mechanisms such as a fast bunch-by-bunch feedback system and/or head-tail damping via nonzero chromaticity. As a by-product, we investigate the transverse beam stability. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP041 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS044 | Instability Latency in the LHC | 3204 |
|
||
The Large Hadron Collider (LHC) has experienced multiple instabilities that occur between minutes and hours after the last modification of the machine settings. The existence of instabilities with high latency has been reproduced also in simulations. Dedicated experiments, injecting a controlled noise into the beam, have now been performed to discover the dependence of this latency on key parameters. The results seem compatible with a mechanism linked to a steady and slow modification of the transverse beam distribution leading to a loss of Landau damping. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS044 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS065 | Analysis on the Thermal Response to Beam Impedance Heating of the Post Ls2 Proton Synchrotron Beam Dump | 4260 |
|
||
The High Luminosity Large Hadron Collider (HL-LHC) and the LIU (LHC-Injection Upgrade) projects at CERN are upgrading the whole CERN accelerators chain, increasing beam brightness and intensity. In this scenario, some critical machine components have to be redesigned and rebuilt. Due to the increase in beam intensity, minimizing the electromagnetic interaction between the beam and the device is a crucial design task. Indeed, these interactions could lead to beam instabilities and excessive thermo-mechanical loadings in the device. In this context, this paper presents an example of multi-physics study to investigate the impedance related thermal effects. The analysis is performed on the conceptual design of the new proton synchrotron (PS) internal dump. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS065 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |