Paper | Title | Page |
---|---|---|
MOPRB098 | An Increased Extraction Energy Booster Complex for the Jefferson Lab Electron Ion Collider | 797 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript. The proposed Jefferson Lab Electron Ion Collider (JLE-IC) envisions an ion complex composed of an ion linac, two booster synchrotrons and a collider ring. The evolving design of the JLEIC booster required an increase in the extraction energy of the booster from 8 to 12.1 GeV kinetic energy, necessitating two machines instead of one. The decision was also made to switch to warm magnets, thus increasing the total radius of the 8 GeV booster. The second booster is now the same size as the collider rings. In this work we present the new designs for JLEIC’s Low Energy Booster (LEB) and High Energy Booster (HEB). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB098 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS081 | An Analytic Approach to Emittance Growth from the Beam-Beam Effect with Applications to the LHeC | 3307 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript. In colliders with asymmetric rigidity such as the proposed Large Hadron electron Collider, jitter in the weaker beam can cause emittance growth via coherent beam-beam interactions. The LHeC in this case would collide 7 TeV protons on 60 GeV electrons, which can be modeled using a weak-strong model. In this work we estimate the proton beam emittance growth by separating out the longitudinal angular kicks from an off-center bunch interaction and produce an analytic expression for the emittance growth per turn in systems like the LHeC. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS081 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS082 | Luminosity Studies of Asymmetric Crab Crossing in JLEIC | 3311 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript. The proposed Jefferson Lab Electron Ion Collider (JLE-IC) currently plans to use a crab crossing scheme to max-imize the available luminosity. It had been suggested that space and cost savings, as well as hadron beam quality improvements, could be realized by leaving the ion beam un-crabbed and increasing the crabbing angle of the elec-tron beam. This and variations in-between equal and totally one-sided crabbing are examined for both JLEIC and LHC parameters, with various changes in crabbing angle and frequency studied to maximize luminosity. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS082 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |