Paper |
Title |
Page |
MOPTS015 |
FoS Cavity of the Alvarez 2.0 DTL as FAIR Injector |
871 |
|
- M. Heilmann, X. Du, L. Groening, S. Mickat, C. Mühle, A. Rubin, V. Srinivasan
GSI, Darmstadt, Germany
|
|
|
The Alvarez 2.0 DTL will be the new post-stripper DTL of the UNILAC at GSI. The existing GSI with its LINAC and SIS18 comprise the main operation injector chain for the Facility for Antiproton and Ion Research FAIR. The new Alvarez-DTL has an operation frequency of 108.4 MHz, an input energy of 1.358 MeV/u and the output energy is 11.4 MeV/u with a total length of 55 m. The presented FoS section will be part of the first cavity of the Alvarez 2.0 DTL. The FoS-cavity with 11 drift tubes (including quadrupole singlets) and a total length of 1.9 m will be copper plated in GSI for high power tests. The design of the quadrupole singlet magnet is finalized; a prototype of a fully functional magnet with drift tube and stems will be fabricated within a design study. Empty drift tubes and all components of the tank shall be delivered 2019 for first low level RF investigations.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS015
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS020 |
Status of the FAIR Proton LINAC |
889 |
|
- C.M. Kleffner, S. Appel, R. Berezov, J. Fils, P. Forck, P. Gerhard, M. Kaiser, K. Knie, A. Krämer, C. Mühle, S. Puetz, A. Schnase, G. Schreiber, A. Seibel, T. Sieber, V. Srinivasan, J. Trüller, W. Vinzenz, M. Vossberg, C. Will
GSI, Darmstadt, Germany
- H. Hähnel, U. Ratzinger, M. Schuett, M. Syha
IAP, Frankfurt am Main, Germany
|
|
|
For the production of Antiproton beams with sufficient intensities, a dedicated high-intensity 325 MHz Proton linac is currently under construction. The Proton linac shall deliver a beam current of up to 70 mA with an energy of 68 MeV for injection into SIS18. The source is designed for the generation of 100 mA beams. The Low-Energy Beam Transport line (LEBT) contains two magnetic solenoid lenses enclosing a diagnostics chamber, a beam chopper and a beam conus. A ladder 4-Rod RFQ and six normal conducting crossbar cavities of CCH and CH type arranged in two sections accelerate the beam to the final energy of 68 MeV. The technical design of the DTL CH cavities are presented and the commissioning measurements of the ion source are described. The construction and the procurement progress, the design and testing results of the key hardware are presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS020
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|