Paper |
Title |
Page |
MOPRB048 |
Collimation System Studies for the FCC-hh |
669 |
|
- R. Bruce, A. Abramov, A. Bertarelli, M.I. Besana, F. Carra, F. Cerutti, M. Fiascaris, G. Gobbi, A.M. Krainer, A. Lechner, A. Mereghetti, D. Mirarchi, J. Molson, M. Pasquali, S. Redaelli, D. Schulte, E. Skordis, M. Varasteh Anvar
CERN, Meyrin, Switzerland
- A. Abramov
JAI, Egham, Surrey, United Kingdom
- A. Faus-Golfe
LAL, Orsay, France
- M. Serluca
IN2P3-LAPP, Annecy-le-Vieux, France
|
|
|
The Future Circular Collider (FCC-hh) is being designed as a 100 km ring that should collide 50 TeV proton beams. At 8.3 GJ, its stored beam energy will be a factor 28 higher than what has been achieved in the Large Hadron Collider, which has the highest stored beam energy among the colliders built so far. This puts unprecedented demands on the control of beam losses and collimation, since even a tiny beam loss risks quenching superconducting magnets. We present in this article the design of the FCC-hh collimation system and study the beam cleaning through simulations of tracking, energy deposition, and thermo-mechanical response. We investigate the collimation performance for design beam loss scenarios and potential bottlenecks are highlighted.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB048
|
|
About • |
paper received ※ 18 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPRB050 |
Performance of the Collimation System During the 2018 Lead Ion Run at the Large Hadron Collider |
677 |
|
- N. Fuster-Martínez, R. Bruce, J.M. Jowett, A. Mereghetti, D. Mirarchi, S. Redaelli
CERN, Geneva, Switzerland
|
|
|
As part of the Large Hadron Collider (LHC) heavy-ion research programme, the last month of the 2018 LHC run was dedicated to Pb ion physics. Several heavy-ion runs have been performed since the start-up of the LHC. These runs are challenging for collimation, despite lower intensities, because of the degraded cleaning observed compared to protons. This is due to the differences of the interaction mechanisms in the collimators. Ions experience fragmentation and electromagnetic dissociation that result in a substantial flux of off-rigidity particles that escape the collimation system. In this paper, the collimation system performance and the experience gained during the 2018 Pb ion run are presented. The measured performance is compared with the expectation from the Sixtrack-FLUKA coupling simulations and the agreement discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB050
|
|
About • |
paper received ※ 07 May 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPRB051 |
Collimation System Upgrades for the High Luminosity Large Hadron Collider and Expected Cleaning Performance in Run 3 |
681 |
|
- A. Mereghetti, R. Bruce, N. Fuster-Martínez, D. Mirarchi, S. Redaelli
CERN, Geneva, Switzerland
|
|
|
In the framework of the High-Luminosity Large Hadron Collider project (HL-LHC), the LHC collimation system needs important upgrades to cope with the foreseen brighter beams. New collimation hardware will be installed in two phases, the first one during the LHC second Long Shutdown (LS2), in 2019-20, followed by a second phase starting in 2024 (LS3). This paper reviews the collimation upgrade plans for LS2, focused on a first impedance reduction of the system, through the installation of collimators based on new materials, and the improvement of collimation cleaning, achieved by adding new collimators in the cold dispersion suppressor regions. The performance of the new system in terms of cleaning inefficiency for proton and lead ion beams is presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB051
|
|
About • |
paper received ※ 06 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYYPLM3 |
First Results of the Compensation of the Beam-Beam Effect with DC Wires in the LHC |
2262 |
|
- G. Sterbini, D. Amorim, H. Bartosik, A. Bertarelli, R. Bruce, X. Buffat, F. Carra, L.R. Carver, G. Cattenoz, E. Effinger, S.D. Fartoukh, N. Fuster-Martínez, M. Gąsior, M. Gonzalez-Berges, A.A. Gorzawski, G.H. Hemelsoet, M. Hostettler, G. Iadarola, O.R. Jones, N. Karastathis, S. Kostoglou, I. Lamas Garcia, T.E. Levens, L.E. Medina Medrano, D. Mirarchi, J. Olexa, S. Papadopoulou, Y. Papaphilippou, D. Pellegrini, M. Pojer, L. Ponce, A. Poyet, S. Redaelli, A. Rossi, B. Salvachua, H. Schmickler, F. Schmidt, K. Skoufaris, M. Solfaroli, R. Tomás, G. Trad, D. Valuch, C. Xu, C. Zamantzas, P. Zisopoulos
CERN, Geneva, Switzerland
- D. Amorim
Grenoble-INP Phelma, Grenoble, France
- M. Fitterer, A. Valishev
Fermilab, Batavia, Illinois, USA
- D. Kaltchev
TRIUMF, Vancouver, Canada
- S. Kostoglou
National Technical University of Athens, Zografou, Greece
- A.E. Levichev
BINP SB RAS, Novosibirsk, Russia
- A. Poyet
Université Grenoble Alpes, Grenoble, France
|
|
|
The compensation of the long-range beam-beam interactions using DC wires is presently under study as an option for enhancing the machine performance in the frame of the High-Luminosity LHC project (HL-LHC). The original idea dates back more than 15 years. After the installation of four wire prototypes in the LHC in 2018, a successful experimental campaign was performed during the last months. The experimental setup and the main results are reported in this paper.
|
|
|
Slides WEYYPLM3 [6.371 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM3
|
|
About • |
paper received ※ 06 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THXXPLM2 |
Demonstration of Loss Reduction Using a Thin Bent Crystal to Shadow an Electrostatic Septum During Resonant Slow Extraction |
3399 |
|
- F.M. Velotti, P. Bestmann, M.E.J. Butcher, M. Calviani, M. Di Castro, M. Donzé, L.S. Esposito, M.A. Fraser, M. Garattini, S.S. Gilardoni, B. Goddard, V. Kain, J. Lendaro, A. Masi, D. Mirarchi, M. Pari, J. Prieto, S. Redaelli, R. Rossi, W. Scandale, R. Seidenbinder, P. Serrano Galvez, L.S. Stoel, C. Zamantzas, V. Zhovkovska
CERN, Meyrin, Switzerland
- F.M. Addesa, F. Iacoangeli
INFN-Roma, Roma, Italy
- A.G. Afonin, Y.A. Chesnokov, A.A. Durum, V.A. Maisheev, Yu.E. Sandomirskiy, A.A. Yanovich
IHEP, Moscow Region, Russia
- J.E. Borg, M. Garattini, G. Hall, T. James, M. Pesaresi
Imperial College of Science and Technology, Department of Physics, London, United Kingdom
- A.S. Denisov, Y. Gavrikov, Yu.M. Ivanov, M.A. Koznov, L.G. Malyarenko, V. Skorobogatov
PNPI, Gatchina, Leningrad District, Russia
- F. Galluccio
INFN-Napoli, Napoli, Italy
- F. Murtas
INFN/LNF, Frascati, Italy
|
|
|
A proof-of-principle experiment demonstrating the feasibility of using a thin, bent crystal aligned upstream of an extraction septum (ES) to increase the efficiency of the third-integer resonant slow extraction process has been carried out at the CERN Super Proton Synchrotron (SPS). With the primary aim of reducing the beam loss and induced radio-activation of the SPS, the crystal was aligned to both the beam and the septum to reduce by up to 40% the beam intensity impinging the ES and increase the intensity entering the external transfer line. In this contribution, we introduce the concept and the prototype system that was installed in 2018 before reporting in detail on the dedicated program of machine development studies carried out to characterise its performance and demonstrate operational feasibility. The performance reach and compatibility with other loss reduction techniques proposed to further increase the extraction efficiency, such as phase space folding with octupoles, is discussed in view of future high intensity operation.
|
|
|
Slides THXXPLM2 [1.397 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THXXPLM2
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 28 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYYPLM2 |
The 2018 Heavy-Ion Run of the LHC |
2258 |
|
- J.M. Jowett, C. Bahamonde Castro, W. Bartmann, C. Bracco, R. Bruce, J.M. Coello de Portugal, J. Dilly, S.D. Fartoukh, E. Fol, N. Fuster-Martínez, A. Garcia-Tabares, M. Hofer, E.B. Holzer, M.A. Jebramcik, J. Keintzel, A. Lechner, E.H. Maclean, L. Malina, T. Medvedeva, A. Mereghetti, T.H.B. Persson, B.Aa. Petersen, S. Redaelli, B. Salvachua, M. Schaumann, C. Schwick, M. Solfaroli, M.L. Spitznagel, H. Timko, R. Tomás, A. Wegscheider, J. Wenninger, D. Wollmann
CERN, Meyrin, Switzerland
- D. Mirarchi
The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
|
|
|
The fourth one-month Pb-Pb collision run brought LHC Run 2 to an end in December 2018. Following the tendency to reduce dependence on the configuration of the preceding proton run, a completely new optics cycle with the strongest ever focussing at the ALICE and LHCb experiments was designed and rapidly implemented, demonstrating the maturity of the collider’s operating modes. Beam-loss monitor thresholds were carefully adjusted to provide optimal protection from the multiple loss mechanisms in heavy-ion operation. A switch from a basic bunch-spacing of 100 ns to 75 ns was made as the beam became available from the injector chain. A new record luminosity, 6 times the original design and close to the operating value proposed for HL-LHC, provided validation of the strategy for mitigating quenches due to bound-free pair production (BFPP) at the interaction points of the ATLAS and CMS experiments. Most of the beam parameters of the HL-LHC Pb-Pb upgrade were attained during this run and the integrated luminosity goals for the first 10 years of LHC operation were substantially exceeded.
|
|
|
Slides WEYYPLM2 [10.884 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM2
|
|
About • |
paper received ※ 08 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|