Paper | Title | Page |
---|---|---|
TUXPLM1 |
Superconducting RF for the Future: Is Nb3Sn Ready for Next-generation Accelerators? | |
|
||
Nb3Sn has long held the promise to significantly improve the performance of superconducting RF cavities in terms of power dissipation and achievable field. However, measurements in the 1980’s and 1990’s proved very disappointing and it was believed that practical limits due to grain boundaries prevented Nb3Sn from achieving its full potential. Only recently (around 2013) has use of the material for accelerator applications been re-visited. Significant progress has been made in the last several years with demonstrated performance reaching levels where implementing Nb3Sn in accelerator applications should be considered. The talk discusses the performance limits and potential applications of Nb3Sn. | ||
![]() |
Slides TUXPLM1 [16.100 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW102 | CBETA - Novel Superconducting ERL | 1651 |
|
||
Funding: New York State Research&Development Authority - NYSERDA agreement number 102192 We are successfully commissioning a unique Cornell University and Brookhaven National Laboratory Electron Recovery Linac (ERL) Test Accelerator ’CBETA’ [1]. The ERL has four accelerating passes through the supercon-ducting linac with a single Fixed Field Alternating Linear Gradient (FFA-LG) return beam line built of the Halbach type permanent magnets. CBETA ERL accelerates elec-trons from 42 MeV to 150 MeV, with the 6 MeV injec-tor. The novelties are that four electron beams, with ener-gies of 42, 78, 114, and 150 MeV, are merged by spreader beam lines into a single arc FFA-LG beam line. The elec-tron beams from the Main Linac Cryomodule (MLC) pass through the FFA-LG arc and are adiabatically merged into a single straight line. From the straight section the beams are brought back to the MLC the same way. This is the first 4 pass superconducting ERL and the first single permanent magnet return line. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW102 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB078 | RF Commissioning and Performance in the CBETA ERL | 3003 |
|
||
Funding: This work was supported by the New York State Energy Research and Development Authority, Contract No. DE-SC0012704 with the U.S. Department of Energy and NSF award DMR-0807731. The Cornell-BNL ERL Test Accelerator (CBETA) is a new multi-turn energy recovery linac currently being commissioned at Cornell University. It uses a superconducting main linac to accelerate electrons by 36 MeV and recover their energy. The energy recovery process is sensitive to fluctuations in the accelerating field of all cavities. In this paper, we outline our semi-automated RF commissioning procedure, which starts from automatic coarse tuning of the cavity all the way to adjusting the field control loops. We show some results of using these tools and describe the recent performance of the RF system during our ongoing commissioning phase. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB078 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB087 | High-gradient SRF Cavity R&D at Cornell University | 3017 |
|
||
Achieving high accelerating field is a critical R&D topic for superconducting RF cavities for future accelerators including the International Linear collider (ILC). The ILC requires an average accelerating field of 35MV/m with a Q0 of at least 8.9·109 at 2K. In this paper, we report the latest results from high-gradient research at Cornell, which focusses on 75C vacuum baking to improve maximum (quench) fields. We demonstrate that such low temperature bakes can significantly improve quench fields in certain cases by mitigating localized defects. We further report on high-pulsed power results of these cavities before and after baking. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB087 | |
About • | paper received ※ 23 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB089 | Theoretical Analysis of Quasiparticle Overheating, Positive Q-Slope, and Vortex Losses in SRF Cavities | 3020 |
SUSPFO131 | use link to see paper's listing under its alternate paper code | |
|
||
The surface resistance of an SRF cavity is an important measure of its performance and utility: lower resistance leads directly to lower cryogenic losses and power consumption. This surface resistance comprises two components, namely the ‘‘BCS resistance’’, which depends strongly on the quasiparticle temperature, and a temperature-independent ‘‘residual resistance’’, which is often dominated by losses due to trapped magnetic vortices. Both components are generally dependent on the RF field strength. Here we present a summary of recent theoretical advances in understanding the microscopic mechanisms of the surface resistance, in particular addressing niobium hydride formation and quasiparticle overheating (using the tools of density functional theory) and discussing issues with existing models of the positive Q-slope, a field-dependent decrease in the BCS resistance, and possible paths for improvement of these models. We also discuss trapped flux losses using ideas from collective weak pinning theory. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB089 | |
About • | paper received ※ 20 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |