Paper |
Title |
Page |
MOPRB048 |
Collimation System Studies for the FCC-hh |
669 |
|
- R. Bruce, A. Abramov, A. Bertarelli, M.I. Besana, F. Carra, F. Cerutti, M. Fiascaris, G. Gobbi, A.M. Krainer, A. Lechner, A. Mereghetti, D. Mirarchi, J. Molson, M. Pasquali, S. Redaelli, D. Schulte, E. Skordis, M. Varasteh Anvar
CERN, Meyrin, Switzerland
- A. Abramov
JAI, Egham, Surrey, United Kingdom
- A. Faus-Golfe
LAL, Orsay, France
- M. Serluca
IN2P3-LAPP, Annecy-le-Vieux, France
|
|
|
The Future Circular Collider (FCC-hh) is being designed as a 100 km ring that should collide 50 TeV proton beams. At 8.3 GJ, its stored beam energy will be a factor 28 higher than what has been achieved in the Large Hadron Collider, which has the highest stored beam energy among the colliders built so far. This puts unprecedented demands on the control of beam losses and collimation, since even a tiny beam loss risks quenching superconducting magnets. We present in this article the design of the FCC-hh collimation system and study the beam cleaning through simulations of tracking, energy deposition, and thermo-mechanical response. We investigate the collimation performance for design beam loss scenarios and potential bottlenecks are highlighted.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB048
|
|
About • |
paper received ※ 18 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYYPLM2 |
The 2018 Heavy-Ion Run of the LHC |
2258 |
|
- J.M. Jowett, C. Bahamonde Castro, W. Bartmann, C. Bracco, R. Bruce, J.M. Coello de Portugal, J. Dilly, S.D. Fartoukh, E. Fol, N. Fuster-Martínez, A. Garcia-Tabares, M. Hofer, E.B. Holzer, M.A. Jebramcik, J. Keintzel, A. Lechner, E.H. Maclean, L. Malina, T. Medvedeva, A. Mereghetti, T.H.B. Persson, B.Aa. Petersen, S. Redaelli, B. Salvachua, M. Schaumann, C. Schwick, M. Solfaroli, M.L. Spitznagel, H. Timko, R. Tomás, A. Wegscheider, J. Wenninger, D. Wollmann
CERN, Meyrin, Switzerland
- D. Mirarchi
The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
|
|
|
The fourth one-month Pb-Pb collision run brought LHC Run 2 to an end in December 2018. Following the tendency to reduce dependence on the configuration of the preceding proton run, a completely new optics cycle with the strongest ever focussing at the ALICE and LHCb experiments was designed and rapidly implemented, demonstrating the maturity of the collider’s operating modes. Beam-loss monitor thresholds were carefully adjusted to provide optimal protection from the multiple loss mechanisms in heavy-ion operation. A switch from a basic bunch-spacing of 100 ns to 75 ns was made as the beam became available from the injector chain. A new record luminosity, 6 times the original design and close to the operating value proposed for HL-LHC, provided validation of the strategy for mitigating quenches due to bound-free pair production (BFPP) at the interaction points of the ATLAS and CMS experiments. Most of the beam parameters of the HL-LHC Pb-Pb upgrade were attained during this run and the integrated luminosity goals for the first 10 years of LHC operation were substantially exceeded.
|
|
|
Slides WEYYPLM2 [10.884 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM2
|
|
About • |
paper received ※ 08 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPMP040 |
Machine Protection Aspects of High-Voltage Flashovers of the LHC Beam Dump Dilution Kickers |
2418 |
|
- C. Wiesner, W. Bartmann, C. Bracco, M. Calviani, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, S.S. Gilardoni, B. Goddard, V. Gomes Namora, T. Kramer, A. Lechner, N. Magnin, M. Meddahi, A. Perillo-Marcone, T. Polzin, L.C. Richtmann, V. Rizzoglio, V. Senaj, J.A.F. Somoza, D. Wollmann
CERN, Meyrin, Switzerland
|
|
|
The LHC Beam Dump System is required to safely dispose of the energy of the stored beam. In order to reduce the energy density deposited in the beam dump, a dedicated dilution system is installed. On July 14, 2018, during a regular beam dump at 6.5 TeV beam energy, a high-voltage flashover of two vertical dilution kickers was observed, leading to a voltage breakdown and reduced dilution in the vertical plane. It was the first incident of this type since the start of LHC beam operation. In this paper, the flashover event is described and the implications analysed. Circuit simulations of the current in the magnet coil as well as simulations of the resulting beam sweep pattern are presented and compared with the measurements. The criticality of the event is assessed and implications for future failure scenarios are discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP040
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPRB031 |
Operational Performance of the Machine Protection Systems of the Large Hadron Collider During Run 2 and Lessons Learnt for the LIU/HL-LHC Era |
3875 |
|
- M. Zerlauth, A. Antoine, W. Bartmann, C. Bracco, E. Carlier, Z. Charifoulline, R. Denz, B. Goddard, A. Lechner, N. Magnin, C. Martin, R. Mompo, S. Redaelli, I. Romera, B. Salvachua, R. Schmidt, J.A. Uythoven, A.P. Verweij, J. Wenninger, C. Wiesner, D. Wollmann, C. Zamantzas
CERN, Geneva, Switzerland
|
|
|
The Large Hadron Collider (LHC) has successfully completed its second operational run of four years length in December 2018. Operation will be stopped during two years for maintenance and upgrades. To allow for the successful completion of the diverse physics program at 6.5 TeV, the LHC has been routinely operating with stored beam energies close to 300 MJ per beam during high intensity proton runs as well as being frequently reconfigured to allow for special physic runs and important machine developments. No significant damage has incurred to the protected accelerator equipment throughout the run thanks to the excellent performance of the various machine protection systems, however a number of important observations and new failure scenarios have been identified, which were studied experimentally as well as through detailed simulations. In this contribution, we provide an overview of the performance of the machine protection systems throughout Run 2 as well as the important lessons learnt that will impact consolidation actions and the upgrade of the machine protection systems for the LIU/HL-LHC era.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB031
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPRB084 |
Run 2 Prompt Dose Distribution and Evolution at the Large Hadron Collider and Implications for Future Accelerator Operation |
4013 |
|
- O. Stein, K. Bilko, M. Brugger, R. Garcia Alia, F.J. Harden, Y. Kadi, A. Lechner, G. Lerner
CERN, Geneva, Switzerland
|
|
|
During the operation of the Large Hadron Collider (LHC) small fractions of beam particles are lost, creating prompt radiation fields in the accelerator tunnels. Exposed electronics and accelerator components show lifetime degradation and stochastic Single Event Effects (SEEs) which can lead to faults and downtime of the LHC. Close to the experiments the radiation levels scale nicely with the integrated luminosity since the luminosity debris is the major contributor for creating the radiation fields in this area of the LHC. In the collimation regions it was expected that the radiation fields scale with the integrated beam intensities since the beams are continuously cleaned from particles which exceed the accelerator’s acceptance. The analysis of radiation data shows that the dose measurements in the collimation regions normalised with the integrated beam intensities for 2016 and 2017 are comparable. Against expectations, the intensity normalised radiation datasets of 2018 in these regions differ significantly from the previous years. Especially in the betatron collimation region the radiation levels are up to a factor 3 higher. The radiation levels in the collimation regions correlate with the levelling of beta-star and the crossing angle in the high luminosity experiments ATLAS and CMS. These increased normalised doses have direct implications on the expected dose levels during future LHC operation, including the High-Luminosity LHC (HL-LHC) upgrade.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB084
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|