Paper | Title | Page |
---|---|---|
MOPGW115 | A Cross-Cell Interleaved Nonlinear Lattice for Potential NSLS-II Upgrade | 393 |
|
||
An interleaved sextupole scheme using cross-cell betatron phase cancellation technique is adopted as a candidate for the future NSLS-II upgrade lattice. The lattice uses as many NSLS-II installed magnets as possible, including 30 dipoles, to compose a triple bend achromat lattice. A 300 pm.rad horizontal beam emittance is achieved. The emittance can be further reduced to around 200 pm rad with damping wigglers. Various design concepts used in modern 4th-generation light sources, such as adopting longitudinal gradient dipoles and anti-bend scheme, are incorporated into the design as well. The betatron phase-advance between sextupoles is designed to have a cross-cell interleaving cancellation pattern in the transverse planes. The dynamic aperture is big enough for the conventional off-axis top-off injection. At the same time, a large energy acceptance looks promising to ensure a sufficiently long beam lifetime. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW115 | |
About • | paper received ※ 12 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW082 | Impedance of the Flange Joints With the RF Contact Spring in NSLS-II | 1597 |
|
||
Funding: This work was supported by Department of Energy Contract No. DE-SC0012704 Since the beginning of the NSLS-II commissioning, temperature of the vacuum components has been moni-tored by the Resistance Temperature Detectors located predominantly outside of the vacuum enclosure and at-tached to the chamber body. Temperature map helps us to control overheating of the vacuum components around the ring especially during the current ramp-up. The average current of 475mA has been achieved with two main 500MHz RF cavities and w/o harmonic cavities. Effect of the RF shielded flanges on local heat and on the longitu-dinal beam dynamics is discussed in details. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW082 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW101 | A New Orbit Feedforward Table Generation Method for Insertion Devices | 2724 |
|
||
Funding: The study is supported by U.S. DOE under Contract No. DE-SC0012704. A new method of orbit feedforward (FF) table generation for insertion devices (IDs) is proposed. The main purpose of the orbit FF table is to suppress orbit disturbance around a storage ring, caused by the gap/phase motion of an ID. A conventional procedure is to measure a closed orbit at a reference ID gap/phase state, and another one at a different state, with all types of orbit feedback (FB) systems disabled. Based on the difference orbit, the correction currents for the local ID correctors are estimated to cancel the global orbit distortion. The new method instead utilizes the orbit deviation at the beam position monitors within an ID straight section (ID BPMs) with respect to a dynamically changing orbit that is defined by the orbit at two BPMs bounding the ID straight. Correction currents are determined such that this orbit deviation at the ID BPMs is minimized. Being impervious to transverse kicks external to this bounded region, this measurement can be performed with a global orbit FB system turned on, which could allow parallel table generation for multiple IDs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW101 | |
About • | paper received ※ 17 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW114 | Interferometric Measurement of Bunch Length of a 3Mev Picocoulomb Electron Beam | 2766 |
|
||
Funding: BNL LDRD We report the bunch length measurement of low-energy 3 MeV electron beams in picosecond regime with the charge from 1.0 to 14 pC. It is the first time that we demonstrate single-cycle nano-joule coherent terahertz (THz) radiation from 3MeV electron beam can be meas-ured via a far-infrared Michelson interferometer using a QOD. At this low energy range, when charge is about 1 pC, the signal from the conventional helium-cooled sili-con composite bolometer is too low. Compared to the bunch length measurement via the ultrafast-laser-pump and electron-beam-probe in the timescale 10-14 to 10-12 s which is determined by the phase-transition dynamics in solids, the advantages are: there are no needs of pump laser and probe sample, greatly simplifying the experi-ment; the timing jitter between laser and electron beams contributes no error to the bunch length measurement; furthermore, the method can be extended to sub-picosecond regime enabling bunch length measurement in a much broader timescale 10-14 to 10-11 s for low-energy electron beams. In the current experiment the bunch length is limited to 1 ps only because the setup of driving laser to cathode with a large 70° incident angle, effective-ly lengthening the laser pulse to ≥1 ps. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW114 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |