Paper | Title | Page |
---|---|---|
MOPMP023 | Dynamic Aperture at Injection Energy for the HE-LHC | 480 |
SUSPFO101 | use link to see paper's listing under its alternate paper code | |
|
||
As part of the Future Circular Collider study, the High Energy LHC (HE-LHC) is a proposed hadron collider situated in the already existing LHC tunnel. It aims at achieving a center of mass energy of 27 TeV, almost doubling the design c.o.m. energy of the LHC. This increase in energy relies on the use of 16 T Nb3Sn dipoles to be developed for the FCC-hh. The field quality of these dipoles is expected to have a big impact on the Dynamic Aperture (DA) at injection energy and subsequently tracking studies are conducted to evaluate the impact of magnetic field errors on the beam dynamics. In the following the results of these studies for the different injection energies considered for the HE-LHC are presented and a possible strategy for increasing the DA are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP023 | |
About • | paper received ※ 06 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP026 | HE-LHC Optics Design Options | 492 |
SUSPFO103 | use link to see paper's listing under its alternate paper code | |
|
||
The High Energy Large Hadron Collider (HE-LHC), a possible successor of the High Luminosity Large Hadron Collider (HL-LHC) aims at reaching a centre-of-mass energy of about 27 TeV using basically the same 16 T dipoles as for the hadron-hadron Future Circular Collider FCC-hh. Designing the HE-LHC results in a trade off between energy reach, beam stay clear as well as geometry offset with respect to the LHC. In order to best meet the requirements, various arc cell and dispersion suppressor options have been generated and analysed, before concluding on two baseline options, which are presented in this paper. Merits of each design are highlighted and possible solutions for beam stay clear minima are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP026 | |
About • | paper received ※ 02 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP027 | Second Order Dispersion Measurements in LHC | 496 |
|
||
The quadratic dependence of the orbit on the relative momentum offset, also known as second order dispersion, is analysed for the first time for the LHC. In this paper, the measurement and analysis procedure are described. Results and implications on future optics are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP027 | |
About • | paper received ※ 02 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP037 | Updated High-Energy LHC Design | 524 |
|
||
Funding: This work was supported in part by the European Commission under the HORIZON 2020 project ARIES no.730871, and by the Swiss Accelerator Research and Technology collaboration CHART. We present updated design parameters for a future High-Energy LHC. A more realistic turnaround time has led to a revision of the target peak luminosity, as well as a choice of a larger IP beta function, and longer physics fills. Pushed parameters of the Nb3Sn superconducting cable together with a modified layout of the 16 T dipole magnets resulted in revised field errors, updated dynamic-aperture simulations, and an associated re-evaluation of injector options. Collimators in the dispersion suppressors help achieve satisfactory cleaning performance. Longitudinal beam parameters ensure beam stability throughout the cycle. Intrabeam scattering rates and Touschek lifetime appear benign. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP037 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP039 | Developments in the Experimental Interaction Regions of the High Energy LHC | 532 |
|
||
Funding: Work supported by the Swiss institute for Accelerator Research and Technology , CHART. The High Energy LHC (HE-LHC) aims to collide 13.5 TeV protons in two high luminosity experiments and two low luminosity experiments. In the following, the recent updates in the two high luminosity experimental interaction regions (EIR) of the HE-LHC will be illustrated. These EIR aim to focus the beams to a β* of 0.45 m at the interaction point (IP) to achieve a lifetime integrated luminosity of 10 ab-1. On top of the triplet optics designed to achieve this, it will present energy deposition driven separation dipole designs, optics solutions for the matching section and dispersion suppressors as well as studies involving the integration into the lattice options. In particular it will outline geometric considerations, spurious dispersion suppression as well as results from dynamic aperture studies. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP039 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYYPLM2 | The 2018 Heavy-Ion Run of the LHC | 2258 |
|
||
The fourth one-month Pb-Pb collision run brought LHC Run 2 to an end in December 2018. Following the tendency to reduce dependence on the configuration of the preceding proton run, a completely new optics cycle with the strongest ever focussing at the ALICE and LHCb experiments was designed and rapidly implemented, demonstrating the maturity of the collider’s operating modes. Beam-loss monitor thresholds were carefully adjusted to provide optimal protection from the multiple loss mechanisms in heavy-ion operation. A switch from a basic bunch-spacing of 100 ns to 75 ns was made as the beam became available from the injector chain. A new record luminosity, 6 times the original design and close to the operating value proposed for HL-LHC, provided validation of the strategy for mitigating quenches due to bound-free pair production (BFPP) at the interaction points of the ATLAS and CMS experiments. Most of the beam parameters of the HL-LHC Pb-Pb upgrade were attained during this run and the integrated luminosity goals for the first 10 years of LHC operation were substantially exceeded. | ||
![]() |
Slides WEYYPLM2 [10.884 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM2 | |
About • | paper received ※ 08 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |