Paper | Title | Page |
---|---|---|
THPGW054 | Generation and Delivery of an Ultraviolet Laser Beam for the RF-Photoinjector of the Awake Electron Beam | 3709 |
|
||
In the AWAKE experiment, the electron beam is used to probe the proton-driven wakefield acceleration in a 10 m long rubidium vapor source. Electron bunches are produced using an RF-gun equipped with a Cs2Te photocathode illuminated by an ultraviolet (UV) laser pulse. To generate the UV laser beam a fraction of the infrared (IR) laser beam used for ionization of rubidium is extracted from the laser system, time-compressed to a picosecond scale and frequency tripled using nonlinear crystals. The transport line of the laser beam over the 20 m distance was built using rigid supports for mirrors and air-evacuated tube to prevent any possible beam pointing instabilities due to vibrations and air convection. Construction of the UV beam optical system enables appropriate beam shaping and control of its size and position on the cathode, as well as time delay with respect to the IR pulse, i.e. with respect to the plasma wakefield seeder. In this paper, we present the design of the UV beam line and results of its commissioning regarding IR/UV conversion, beam pointing stability, and means of beam control and monitoring. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW054 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW057 | HL-LHC Full Remote Alignment Study | 3716 |
|
||
Funding: Research supported by the HL-LHC project. This study explores the benefits of extending the monitoring and remote alignment concept, proposed in the HL-LHC baseline, to additional components of the matching sections of the HL-LHC. The objective was to evaluate the benefits in terms of equipment performance and new opportunities for system simplification. In collaboration with the HL-LHC Working Group on Alignment, critical input parameters such as ground motion, manufacturing, assembly, and alignment tolerances, have been quantified. Solutions for the selected, manually aligned compo-nents have been investigated with the particular focus on vacuum design, mechanical design and the new alignment concept compatible with reliability and maintainability requirements. In this context, collimators and masks are key elements to be included in the extended alignment system. Their supporting systems will integrate the concept of on-line monitoring sensors and an actuator based, remote alignment platform. The full remote alignment of components will provide a positive impact to the machine operation reducing the need of human intervention in the tunnel and providing enhanced flexibility to perform the required alignment adjustment as part of an operational tool for the HL-LHC. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW057 | |
About • | paper received ※ 09 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |