Paper | Title | Page |
---|---|---|
THPTS087 | Micro-aligned Solenoid for Magnetized Bunched-beam Electron Cooling of 100 GeV/u Ions | 4314 |
|
||
Funding: This work is supported by grant DE-SC0018468 from the US Dept. of Energy. Magnetized electron cooling of ion beams requires pre-cise alignment of the electron beam with the equilibrium trajectory of the ion bunch. For the parameters required for JLEIC, a solenoid with bore field ~1 T, length ~30 m, and rms alignment of ~μrad is required. Such precise alignment has never been accomplished in a 1 T solenoid. The design of a micro-aligned solenoid is presented. A gap-separated stack of thin steel washers is located inside the solenoid. The washer stack shields transverse magnet-ic fields from its interior by a factor of ~10. A 30-washer module of the structure was built and measured using ultra-sensitive capacitive probes using a coordinate meas-uring machine. The r.m.s. coplanarity of the washer gaps was measured to be <5 μm, consistent with the required micro-alignment. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS087 | |
About • | paper received ※ 17 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP049 | 6 T Cable-in-conduit Dipole to Double the Ion Energy for JLEIC | 556 |
|
||
The proposed electron-ion collider JLEIC would make high-luminosity collisions of polarized ions and polarized electrons with electron energy up to 12 GeV and ion energy up to 40 GeV/u. Both the luminosity and the collision energy could be increased by doubling the dipole field in the ion ring from 3 T to 6 T, and the enhanced performance would access the full range of parameters for the physics objectives of the project. The Texas A&M group has developed the large-aperture 3 T dipoles for the baseline project, based upon a novel superconducting cable-in-conduit. (CIC). A closely similar 6 T design is being developed, utilizing a 2-layer CIC. Details of the magnet design and development of the 2-layer CIC will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP049 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |