Author: Dhanak, V.R.
Paper Title Page
TUPMP051 MULTIPACTOR SUPPRESSION BY LASER ABLATION SURFACE ENGINEERING FOR SPACE APPLICATIONS 1365
 
  • R. Valizadeh, A.N. Hannah, O.B. Malyshev, B.S. Sian
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.S. Colligon
    University of Huddersfield, Huddersfield, United Kingdom
  • Y. Dan
    Hitachi High-Technologies Corp., Ibaraki-ken, Japan
  • V.R. Dhanak
    The University of Liverpool, Liverpool, United Kingdom
  • J. Mutch
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • B.S. Sian
    UMAN, Manchester, United Kingdom
  • N. Sykes
    Micronanics Laser Solution Center, Didcot, United Kingdom
 
  Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators and space-borne RF equipment for communication purposes. In this study we report on the secondary electron yield (SEY) measured from silver coated aluminium alloy as-received and after laser ablation surface engineering (LASE). Analysis shows the SEY can be reduced by 43% using LASE. EDX and SEM analysis shows it is possible to reduce the SEY whilst maintaining the original surface composition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP051  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB011 PVD Depostion of Nb3Sn Thin Film on Copper Substrate from an Alloy Nb3Sn Target 2818
 
  • R. Valizadeh, S. Aliasghari, A.N. Hannah, O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • K. Dawson, V.R. Dhanak
    The University of Liverpool, Liverpool, United Kingdom
  • G.B.G. Stenning
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • D. Turner
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Turner
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  In this study we report on the PVD deposition of Nb3Sn on Cu substrates with and without a thick Nb interlayer to produce Cu/Nb/Nb3Sn and Cu/Nb3Sn multilayer structures. The Nb3Sn was sputtered directly from an alloy target at room and elevated temperatures. The dependence of the superconducting properties of the total structure on deposition parameters has been determined. The films have been characterized via SEM, XRD, EDX and SQUID magnetometer measurements. Analysis showed that the composition at both room and elevated temperature was within the desired stoichiometry of 24’25 at%. However, superconductivity was only observed for deposition at elevated temperature or post annealing at 650 °C. The critical temperature was determined to be in the range of 16.8 to 17.4 K. In the case of bilayer deposition, copper segregation from the interface all the way to the surface was observed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB011  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)