Author: Cooke, D.A.
Paper Title Page
WEPGW089 Calibration of the AWAKE Electron Spectrometer with Electrons Derived from a Partially Stripped Ion Beam 2694
 
  • D.A. Cooke, M. Cascella, J. Chappell, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • R. Alemany-Fernández, J. Bauche, I. Gorgisyan, E. Gschwendtner, V. Kain, M.W. Krasny, S. Mazzoni, A.V. Petrenko
    CERN, Meyrin, Switzerland
  • P. La Penna, M. Quattri
    ESO, Garching bei Muenchen, Germany
 
  The energy distribution of electrons accelerated in the wake of a self-modulated proton beam is measured using a magnetic spectrometer at AWAKE. The spectrometer was commissioned in 2017 and ran successfully throughout 2018. Imaging properties of the spectrometer system are studied via a combination of simulations and linear optics models and validated using mono-energetic electrons stripped from the partially stripped ion beam in the AWAKE beamline at CERN. These and other details of the calibration and performance will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW089  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW067 Progress Towards a Single-Shot Emittance Measurement Technique at AWAKE 3742
SUSPFO113   use link to see paper's listing under its alternate paper code  
 
  • J. Chappell, D.A. Cooke, L.C. Deacon, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
 
  Externally injected electrons are captured and accelerated in the plasma wake of a self-modulated proton beam at the Advanced Wakefield Experiment (AWAKE) at CERN. The energy distribution of the accelerated electron beam is measured using a dipole spectrometer in combination with a scintillator screen, with two upstream quadrupoles providing energy-dependent focusing. Measuring the vertical beam size variation with horizontal position along the scintillator screen, and therefore energy, results in an effective quadrupole scan permitting single shot vertical geometric emittance measurements. Limitations of the method due to effects such as imperfect beam focusing and finite resolution are explored via simulations using the beam tracking code BDSIM.
james.chappell.17@ucl.ac.uk
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW067  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)