Author: Bacha, B.
Paper Title Page
MOPGW122 Beam-based Measurement of Broadband Longitudinal Impedance at NSLS-II 400
 
  • V.V. Smaluk, B. Bacha, G. Bassi, A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Department of Energy Contract No. DE-SC0012704
Interaction of a particle beam with the vacuum chamber impedance is one of the main effects limiting the beam intensity in accelerators. Minimization of the impedance is an essential part of the vacuum chamber design for any new accelerator project. The impedance can be estimated experimentally by measuring beam dynamics effects caused by the beam-impedance interaction. Experience obtained at many accelerator facilities shows the beam-based measurements are often different from the pre-computed impedance budgets, the discrepancy of a factor of two or even more is not unusual. The measurements of broadband longitudinal impedance carried out at NSLS-II are discussed in comparison with the numerically simulated impedance budget.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW122  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW082 Impedance of the Flange Joints With the RF Contact Spring in NSLS-II 1597
 
  • A. Blednykh, B. Bacha, G. Bassi, C. Hetzel, B.N. Kosciuk, T.V. Shaftan, V.V. Smaluk, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by Department of Energy Contract No. DE-SC0012704
Since the beginning of the NSLS-II commissioning, temperature of the vacuum components has been moni-tored by the Resistance Temperature Detectors located predominantly outside of the vacuum enclosure and at-tached to the chamber body. Temperature map helps us to control overheating of the vacuum components around the ring especially during the current ramp-up. The average current of 475mA has been achieved with two main 500MHz RF cavities and w/o harmonic cavities. Effect of the RF shielded flanges on local heat and on the longitu-dinal beam dynamics is discussed in details.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW082  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW114 Interferometric Measurement of Bunch Length of a 3Mev Picocoulomb Electron Beam 2766
 
  • X. Yang, M. Babzien, B. Bacha, G.L. Carr, W.X. Cheng, L. Doom, M.G. Fedurin, B.N. Kosciuk, J.J. Li, D. Padrazo Jr, T.V. Shaftan, V.V. Smaluk, C. Swinson, L.-H. Yu, Y. Zhu
    BNL, Upton, Long Island, New York, USA
 
  Funding: BNL LDRD
We report the bunch length measurement of low-energy 3 MeV electron beams in picosecond regime with the charge from 1.0 to 14 pC. It is the first time that we demonstrate single-cycle nano-joule coherent terahertz (THz) radiation from 3MeV electron beam can be meas-ured via a far-infrared Michelson interferometer using a QOD. At this low energy range, when charge is about 1 pC, the signal from the conventional helium-cooled sili-con composite bolometer is too low. Compared to the bunch length measurement via the ultrafast-laser-pump and electron-beam-probe in the timescale 10-14 to 10-12 s which is determined by the phase-transition dynamics in solids, the advantages are: there are no needs of pump laser and probe sample, greatly simplifying the experi-ment; the timing jitter between laser and electron beams contributes no error to the bunch length measurement; furthermore, the method can be extended to sub-picosecond regime enabling bunch length measurement in a much broader timescale 10-14 to 10-11 s for low-energy electron beams. In the current experiment the bunch length is limited to 1 ps only because the setup of driving laser to cathode with a large 70° incident angle, effective-ly lengthening the laser pulse to ≥1 ps.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW114  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)