Author: Aulenbacher, K.
Paper Title Page
MOPTS034 Advanced Beam Dynamics Design for the Superconducting Heavy Ion Accelerator HELIAC 928
SUSPFO024   use link to see paper's listing under its alternate paper code  
 
  • M. Schwarz, M. Basten, M. Busch, T. Conrad, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, M. Heilmann, S. Lauber, J. List, A. Rubin, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • S. Lauber, J. List
    KPH, Mainz, Germany
 
  Funding: Work supported by BMBF contr. No. 05P18RFRB1, EU Framework Programme H2020 662186 (MYRTE) and HIC for FAIR
The standalone superconducting (SC) continuous wave (CW) heavy ion linac HELIAC (HElmholtz LInear ACcelerator) is a common project of GSI and HIM under key support of IAP Frankfurt and in collaboration with Moscow Engineering Physics Institute (MEPhI) and Moscow Institute for Theoretical and Experimental Physics (KI-ITEP). It is intended for future experiments with heavy ions near the Coulomb barrier within super-heavy element (SHE) research and aims at developing a linac with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with minimum energy spread. In 2017 the first superconducting section of the linac has been successfully commissioned and extensively tested with beam at GSI. In the light of experience gained in this research so far, the beam dynamics layout for the entire linac has recently been updated and optimized with particular emphasis on realistic assumptions of cavity gap and drift lengths as well as gap voltage distributions for CH3’CH11.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS034  
About • paper received ※ 30 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS011 Vacuum Lifetime and Surface Charge Limit Investigations Concerning High Intensity Spin-polarized Photoinjectors 1954
 
  • S. Friederich, K. Aulenbacher, C. Matejcek
    IKP, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: DFG excellence initiative PRISMA+, Bundesministerium für Bildung und Forschung "Verbundforschung FKZ 05K16UMA"
The Small Thermalized Electron Source at Mainz (STEAM) is a dc photoemission source. It is designed to operate at up to 200kV bias voltage with an accelerating field of up to 5 MV/m at the cathode surface. In several experiments, the properties of GaAs operating under the conditions of spin-polarized photoemission were investigated. Its performance, quantum efficiency lifetime and surface charge limit observations for bulk-GaAs will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS011  
About • paper received ※ 29 April 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB014 Further RF Measurements on the Superconducting 217 MHz CH Demonstrator Cavity for a CW Linac at GSI 2826
 
  • F.D. Dziuba, K. Aulenbacher, W.A. Barth, C. Burandt, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, J. Salvatore, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Basten, M. Busch, T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • S. Lauber, J. List
    KPH, Mainz, Germany
 
  Funding: Work supported by GSI, HIM, BMBF Contr. No. 05P18UMRB2
Recently, the first section of the superconducting (sc) continuous wave (cw) Linac has been extensively tested with heavy ion beam from the GSI High Charge State Injector (HLI). During this testing phase, the reliable operability of 217 MHz multi gap crossbar-H-mode (CH) cavities has been successfully demonstrated. The sc 217 MHz CH cavity (CH0) of the demonstrator setup accelerated heavy ions up to the design beam energy and even beyond at high beam intensities and full transmission. This worldwide first beam test with a sc CH cavity is a major milestone on the way realizing the entire sc cw Linac project. In this contribution further RF measurements on the cavity are presented providing full characterization of the RF structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB014  
About • paper received ※ 26 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB019 Collimation of Target Induced Halo Following MAGIX at MESA 3839
SUSPFO021   use link to see paper's listing under its alternate paper code  
 
  • B. Ledroit
    IKP, Mainz, Germany
  • K. Aulenbacher
    KPH, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode. It provides the opportunity to operate scattering experiments at energies of ~100 MeV with thin gas-targets. The MESA Internal Gas Target Experiment (MAGIX) aims to operate windowless jet targets and different gases up to Xenon to search for possible dark photon interactions, to precisely measure the magnetic proton radius and astrophysical S-factors. Investigations on the impact of the target on beam dynamics and beam losses are required for machine safety and to examine limits to ERL operation. The goal of this work is to understand target induced halo in the different experimental setups, track halo particles through downstream sections to examine beam losses and include a suitable collimation system and shielding into the accelerator layout to protect the machine from direct and indirect damage through beam losses and radiation. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB019  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZPLM1 Beam Commissioning of the Demonstrator Setup for the Superconducting Continuous Wave HIM/GSI-Linac 33
 
  • M. Miski-Oglu, K. Aulenbacher, V. Gettmann, T. Kürzeder
    HIM, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba
    IKP, Mainz, Germany
  • W.A. Barth, C. Burandt, V. Gettmann, M. Heilmann, T. Kürzeder, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, M. Busch, T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  During successful beam commissioning of the superconducting 15-gap Crossbar H-mode cavity at GSI Helmholtzzentrum für Schwerionenforschung heavy ions up to the design beam energy have been accelerated. The design acceleration gain of 3.5 MeV inside a length of less than 70 cm has been reached with full transmission for heavy ion beams of up to 1.5 particle mueA. The measured beam parameters confirm sufficient beam quality. The machine beam commissioning is a major milestone of the R&D for the superconducting heavy ion continuous wave linear accelerator HELIAC of Helmholtz Institute Mainz (HIM) and GSI developed in collaboration with IAP Goethe-University Frankfurt. The next step is the procurement and commissioning of so called ’Advanced Demonstrator’ - the first of series cryo module for the entire accelerator HELIAC. Results of further Demonstrator beam tests, as well as the status of the Advanced demonstrator project will be reported.  
slides icon Slides MOZZPLM1 [3.088 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM1  
About • paper received ※ 29 April 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS024 Reconstruction of the Longitudinal Phase Portrait for the SC CW Heavy Ion HELIAC at GSI 898
 
  • S. Lauber, K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba
    IKP, Mainz, Germany
  • W.A. Barth, C. Burandt, F.D. Dziuba, P. Forck, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, A. Rubin, T. Sieber, S. Yaramyshev
    GSI, Darmstadt, Germany
  • H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  At the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany, the HElmholtz LInear ACcelerator (HELIAC) is currently under construction. The HELIAC comprises superconducting multigap Crossbar H-mode (SC CH) cavities. The input beam is delivered by an already existing High Charge Injector (HLI). For the further development of the accelerator a detailed knowledge of the input beam parameters to the SC section is necessary. A method for beam reconstruction is incorporated, which provides for longitudinal beam characteristics using measurements with a beam shape monitor and a particle simulation code. This finalizes the investigations on 6D beam parameters, following previous measurements in transversal phase space. The reconstruction of the longitudinal phase portrait is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS024  
About • paper received ※ 24 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW023 Incorporation of a MESA Linac Modules into BERLinPro 1449
 
  • B.C. Kuske, W. Anders, A. Jankowiak, A. Neumann
    HZB, Berlin, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • F. Hug, T. Stengler, C.P. Stoll
    KPH, Mainz, Germany
 
  Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin, grants of the Helmholtz Association and grants of Helmholtz Association and the DFG within GRK 2128
BERLinPro is an Energy Recovery Linac (ERL) project, currently being set up at the Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany. BERLinPro is designed as - and for - experiments in accelerator physics and as a test bed for novel ERL components. MESA is an ERL project under construction at the Johannes Gutenberg-Universität, Mainz, Germany. MESA is designed as a user facility to perform experiments in dark matter physics and precision measurements of natural constants. Despite the diverse goals, the main linac, providing the larger part of the particles energy, is fairly compatible. It is planned to test and run the MESA linac module in BERLinPro, prior to its usage in MESA. The goals and benefits of this unique cooperation for both projects are outlined in this paper. The necessary adaptions in BERLinPro, including hardware aspects, the new optics, and the scope of performance are described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW023  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB015 Cleanroom Installations for SRF Cavities at the Helmholtz-Institut Mainz 2830
 
  • T. Kürzeder, K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, R.G. Heine, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba
    IKP, Mainz, Germany
  • W.A. Barth, C. Burandt, V. Gettmann, M. Miski-Oglu, S. Yaramyshev
    GSI, Darmstadt, Germany
  • J. Conrad
    TU Darmstadt, Darmstadt, Germany
  • R.G. Heine, F. Hug, T. Stengler
    KPH, Mainz, Germany
 
  At the Helmholtz-Institut Mainz (HIM) a cleanroom has been equipped with new tools and installations for the planned treatment of different superconducting RF-cavities. At first TESLA/XFEL type 9-cell cavities for the Mainz Energy-Recovering Superconducting Accelerator (MESA) project or 217 MHz multigap Crossbar H-mode cavities for the HElmholtz LInear ACcelerator (HELIAC) under development by HIM and GSI will be treated. The cleanroom installations, including the greyroom, cover an area of about 155 sqm. In its ISO-class 6 area a large ultrasonic and a conductance rinsing bath has been installed recently. A high pressure rinsing cabinet (HPR) has been implemented between the ISO-class 6 and 4 cleanroom. A RF-cavity can be loaded and unloaded from both sides. HPR treatments are possible for cavities of up to 1.4 m length and about 0.7 m diameter. For drying the ISO-class 4 clean room is equipped with a 160 C vacuum oven. New cleanroom lifters allow the handling of up to 200 kg heavy objects. A rail system in the cleanroom floor is installed to move out the entire cold string of the cleanroom after assembly and leak testing. First operational experiences with this facility will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB015  
About • paper received ※ 29 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW028 Low Energy Beam Transport System for MESA 1461
 
  • C. Matejcek, K. Aulenbacher, S. Friederich
    IKP, Mainz, Germany
 
  An important part of the new accelerator MESA (Mainz Energy-recovering Superconducting Accelerator) is the low energy beam transport system connecting the 100 keV electron source with the injector accelerator. The present setup includes the chopper- and bunching system. The devices are of most importance in order to achieve sufficient bunch compression particularely at higher bunch charges and currents. With the circular deflecting cavity of the chopper system it is possible to measure the longitudinal dimension of the bunches upstream of the buncher whereas downstream the longitudinal size will be measured by Smith Purcell radiation. Based on experimental results obtained from this setup we will discuss the beam parameter and compare them with simulations of the beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW028  
About • paper received ※ 30 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS009 High-Current Emittance Measurements at MAMI 4121
 
  • S. Heidrich, K. Aulenbacher, M. Dehn, P. Heil
    IKP, Mainz, Germany
  • M.W. Bruker
    HIM, Mainz, Germany
 
  Funding: Work supported by BMBF-Verbundforschung Verbundprojekt 05H2015UMRB1, R&D Beschleuniger (Positronenquellen)
The effects of high beam currents and different types of electron sources on the emittance of the beam at the 3.5 MeV beamline of the Mainzer Microtron MAMI were observed. A thermionic BaO source and a GaAs-based photo-source that allows spin polarization were used. In order to measure the beam size, a new type of wire scanner was utilized. The results show maximum normalized emittance values in the order of a few hundred nmrad for both sources, which lies distinctly within the acceptance of the higher energy stages of the accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS009  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)