Paper | Title | Page |
---|---|---|
MOXPLM2 | From Dreams to Reality: Prospects for Applying Advanced Accelerator Technology to Next Generation Scientific User Facilities | 1 |
|
||
Recent years have seen spectacular progress in the development of innovative acceleration methods that are not based on traditional RF accelerating structures. These novel developments are at the interface of laser, plasma and accelerator physics and may potentially lead to much more compact and economical accelerator facilities. While primarily focusing on the ability to accelerate charged particles with much larger gradients than traditional RF, these new techniques have yet to demonstrate comparable performances to RF in terms of both beam parameters or reproducibility. To guide the developments beyond the necessary basic R&D and concept validations, a common understanding and definition of required performance and beam parameters for an operational user facility is now needed. These innovative user facilities can include "table-top" light sources, medical accelerators, industrial accelerators or even high-energy colliders. The talk will review the most promising developments in new acceleration methods, it will present the status of ongoing projects including the EU project EuPRAXIA and will identify the set of required specifications for the application under consideration. | ||
![]() |
Slides MOXPLM2 [16.331 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOXPLM2 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 16 June 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGW027 | Design Considerations for Permenant Magnetic Quadrupole Triplet for Matching Into Laser Driven Wake Field Acceleration Experiment at SINBAD | 143 |
|
||
SINBAD (Short and INnovative Bunches and Accelerators at DESY) facility aims to produce ultrashort bunches (sub-fs) at ~100 MeV, suitable for injection into novel accelerators e.g. dielectric Laser acceleration (DLA) and Laser Driven Wakefield acceleration (LWFA). The LWFA experiment demands β functions to be of the order of 1 mm to reduce energy spreads and emittance growth from nonlinearities. Matching such a space charge dominated beam to such constraints with conventional electromagnets is challenging. A Permanent Magnetic Quadrupole (PMQ) triplet is one promising focusing strategy. In this paper, we investigate the performance of a PMQ triplet to fit the requirements of the electron beam properties in a plasma cell and discuss the realizable phase spaces for the LWFA experiment planned at SINBAD. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW027 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGW028 | Study for the Alignment of Focusing Solenoid of ARES RF Gun and Effect of Misalignment of Solenoid on Emittance of Space Charge Dominated Electron Beam | 147 |
SUSPFO028 | use link to see paper's listing under its alternate paper code | |
|
||
SINBAD (Short and INnovative Bunches and Accelerators at DESY) facility will host multiple experiments relating to ultra-short high brightness beams and novel experiments with ultra-high gradient. ARES (Accelerator Research Experiment at SINBAD) Linac is an S-band photo injector to produce such electron bunches at around 100 MeV. The Linac will be commissioned in stages with the first stage corresponding to gun commissioning. In this paper, we present studies about the scheme adopted for the alignment of focusing solenoid for the ARES gun. The method is bench marked using ASTRA simulations. Moreover the effect of misalignment of the solenoid on the emittance of space charge dominated scheme and its compensation is also discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW028 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS014 | The Experimental Area at the ARES LINAC | 867 |
|
||
The ARES (Accelerator Research Experiment at SINBAD) linac at the accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches. In addition the linac will host an experimental area, open for transnational access, to study advanced high gradient, laser driven, acceleration concepts, like the ones studied within the ACHIP (accelerator on a chip) project. The area will be operational mid-2019. This paper will report on the current status of the experimental area, including hardware parameters, beam optics, achievable beam parameters, design of the experimental chamber and commissioning plans. The modification plans for a micro-bunching experiment in the frame of the ACHIP experiment and future upgrade plans will be shown and discussed in detail. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS014 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS025 | Overview of the ARES Bunch Compressor at SINBAD | 902 |
|
||
Funding: This project has received funding from the European Unions Horizon 2020 Research and Innovation programme under Grant Agreement No 730871. Bunch compressors are essential for the generation of short bunches with applications in e.g. colliders, free electron lasers, and advanced accelerator concepts. The up-and-coming ARES accelerator located at SINBAD, DESY will support the formation of ~100~MeV, pC, sub-fs electron bunches for LWFA research and development. We give an overview on the ARES bunch compressor, providing start-to-end simulations of the machine and an update on its technical design. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS025 | |
About • | paper received ※ 17 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS026 | Status Report of the SINBAD-ARES RF Photoinjector and LINAC Commissioning | 906 |
|
||
The accelerator R&D facility SINBAD (Short innovative bunches and accelerators at DESY) will drive multiple independent experiments including the acceleration of ultrashort electron bunches and the test of advanced high gradient acceleration concepts. The SINBAD-ARES (Accelerator Research Experiment at SINBAD) setup hosts a normal conducting RF photoinjector generating a low charge electron beam that is afterwards accelerated to 100 MeV by an S-band linac section. The linac as well as a magnetic chicane allow the production of ultrashort pulses with an excellent arrival-time stability. The high brightness beam has then the potential to serve as a test beam for next generation compact acceleration schemes. The setup of the SINBAD-ARES facility will proceed in stages. We report on the current status of the ARES RF gun and linac commissioning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS026 | |
About • | paper received ※ 22 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB008 | LUXE - a QED Experiment at the European XFEL | 1694 |
|
||
The proposed experiment aims to measure QED in the presence of strong fields and above the Schwinger critical field. An experiment is being considered at the European XFEL, which should be able to measure non-perturbative QED and its transition from the perturbative regime. This paper presents the current status of the LUXE (Laser und XFEL Experiment) design study. First layout considerations; accelerator beam line design, electron and laser beam parameters, radioprotection issues and first results of the start to end simulations will be presented and discussed in detail. An outlook concerning the implementation into the XFEL schedule and timeline of this experiment will be given. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB008 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB013 | Simulation Studies for a EEHG seeded FEL in the XUV | 1705 |
SUSPFO014 | use link to see paper's listing under its alternate paper code | |
|
||
Echo-enabled harmonic generation (EEHG) is a promising technique for seeded free electron lasers (FELs) not only to go down to wavelengths of 4 nm, but also to simplify the schemes that are currently used to achieve a similar wavelength range (double cascade HGHG). Thus a study optimizing the EEHG performance in the wavelength range from 60 to §I{4}{nm} has been performed. The more critical working point, at 4 nm, is here analyzed in terms of seed laser energy stability for two different seed laser frequencies: visible and UV. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB013 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZZPLS2 | EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality | 2291 |
|
||
Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782 The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized. *- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285 |
||
![]() |
Slides WEZZPLS2 [5.157 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2 | |
About • | paper received ※ 12 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW011 | Development of a Silicon Strip Detector for Novel Accelerators at Sinbad | 2487 |
|
||
At the SINBAD facility (DESY Hamburg), novel particle acceleration techniques like dielectric laser acceleration (DLA) structures will be tested using the ARES linac. Due to the small size of these structures, the accelerated electron beams only have a very low (sub-pC) charge. To determine the energy distribution of these beams, a silicon strip detector for the ARES linac spectrometer is currently under development. This detector fulfils the requirements of high spatial resolution for low charge density beams. The detector consists of two 1 cm x 1 cm silicon strip sensors and readout components. The design of the detector, its components and an estimate of its behaviour for a specific electron beam distribution are presented and discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW011 | |
About • | paper received ※ 17 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW011 | Commissioning-Stages and Radio-Protection Concept for the THz-Linac Based Accelerator "AXSIS" at DESY | 3598 |
|
||
The dedicated accelerator R&D facility SINBAD at DESY hosts the AXSIS accelerator. This project is funded by the European Research Council to develop a compact source for attosecond serial X-ray crystallography and spectroscopy. For that purpose, in one of the arcs of the SINBAD facility and the neighboring laser labs, an accelerator research site is being constructed where a fully THz-driven accelerator (electron gun and linac, < 30MeV) will be installed. The current status of the hardware installation of the electron beam accelerator is presented. Furthermore, the required radio-protection measures and maximum beam parameters are presented. In this contribution the commissioning plans and the staging of the beam operation for the accelerator complex will be shown and discussed in detail. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW011 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW012 | Wake-T: A Fast Particle Tracking Code for Plasma-Based Accelerators | 3601 |
|
||
The design and study of plasma-based accelerators relies typically on costly 3D Particle-In-Cell (PIC) simulations due to the complexity of the laser-plasma and beam-plasma interactions. However, under certain assumptions, more efficient and simple models can be implemented to describe the dynamics of the accelerated beams. Wake-T (Wakefield particle Tracker) is a new code for analytical and numerical particle tracking in plasma-based accelerators which is orders of magnitude faster than conventional PIC codes. This allows for fast parameter scans and is well suited for the initial design and optimization of these novel accelerators. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW012 | |
About • | paper received ※ 24 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW014 | Tolerance Studies and Limitations for Photonic Bandgap Fiber Accelerators | 3605 |
|
||
Laser-driven hollow core photonic bandgap (PBG) fibers were proposed by Lin in 2001 as high-gradient accelerators. The central defect in the transversely periodic lattice supports an accelerating mode for synchronous acceleration in the ultra-relativistic regime. The optical frequencies in such dielectric laser accelerators motivate a sensitivity and tolerance study to overcome manufacturing imperfections. Finally we discuss the propagation characteristics of Lin-fibers and find that small-bandwidth (~ns) pulses would be needed for efficient acceleration over longer distances. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW014 | |
About • | paper received ※ 16 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW015 | Proposed Beam Test of a Transverse Gradient Undulator at the SINBAD Facility at DESY | 3609 |
|
||
While Laser Plasma Accelerators produce beams with the high output energy required for FELs, up to now the relatively high energy spread has prohibited FEL lasing. Therefore it was proposed to replace the normal FEL undulators by Transverse Gradient Undulators (TGUs). For a first, small scale test of the TGU concept, a 40 period prototype high gradient superconductive TGU was built at KIT and will be tested with beam at the ARES-linac in the new accelerator test facility SINBAD (Short Innovative Bunches and Accelerators at Desy) at DESY. The proposed tests are summarized in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW015 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW022 | The Effect of the Transverse Beam Jitter on the Accelerated Electron Beam Quality in a Laser-Driven Plasma Accelerator with External Injection at SINBAD for ATHENAe | 3624 |
|
||
Laser plasma accelerators with external injection of an RF-generated electron beam, providing high accelerating field gradients and increased control over the electron beam injection process, are promising candidates for production electron beams matching the requirements of modern user-applications. The experiments are planned at the SINBAD (Short INnovative Bunches and Accelerators at DESY) facility to test this acceleration technique in the context of the ATHENAe (Accelerator Technology HElmholtz iNfrAstructure) project. In this paper we present numerical studies on the effect of the transverse electron beam jitter on the final quality of a sub-femtosecond, 0.75 pC, 100 MeV electron beam accelerated to 1 GeV energy in the plasma wakefield driven by a 196 TW, 5 J laser pulse. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW022 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW023 | Numerical Studies on Electron Beam Quality Optimization in a Laser-Driven Plasma Accelerator with External Injection at SINBAD for ATHENAe | 3628 |
|
||
Nowadays the electron beams produced in plasma-based accelerators (PBAs) are of sufficient energy for multi-GeV applications. However, to allow PBAs to be usable for demanding applications such as Free-Electron Lasers, the quality and stability of plasma-accelerated beams have to be improved. We present numerical studies on accelera-tion of an RF-generated electron beam with a charge of 0.8 pC and initial mean energy of 100 MeV to GeV energies by a laser-plasma accelerator. This acceleration scheme is planned to be tested experimentally within the framework of the ATHENAe (Accelerator Technology HElmholtz iNfrAstructure) project at the SINBAD (Short INnovative Bunches and Accelerators at DESY) facility at DESY, Hamburg. Electron beam injection, acceleration and extraction from the plasma are investigated through start-to-end 3D simulations. The effect of the injection phase on the accelerated beam quality is investigated through tolerance studies on the arrival-time jitter between the electron beam and the external laser. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW023 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW025 | Facility Considerations for a European Plasma Accelerator Infrastructure (EuPRAXIA) | 3635 |
|
||
Funding: This work was supported by the European Union‘s Horizon 2020 research and innovation programme under grant agreement No. 653782. EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is a conceptual design study for a compact European infrastructure with multi-GeV electron beams based on plasma accelerators. The concept foresees two main experimental sites, one at INFN in Frascati and one at DESY in Hamburg. In Frascati, an RF injector based on S-band and X-band technology (electron energy up to 1 GeV) will be constructed and used as a drive beam for beam driven plasma acceleration (PWFA) with final electron beam energies up to 5 GeV. At DESY, the focus will be on laser driven plasma acceleration (LWFA) and an RF injector based on S-band technology (electron energy up to 240 MeV) or alternatively a plasma injector (electron energy up to 150 MeV) can be used before the beam is injected into the plasma accelerator for external LWFA and acceleration up to 5 GeV. A single stage approach based on LWFA with internal injection will also be pursued in a second beamline. User areas at both sites will provide access to FEL pilot experiments, positron generation, compact radiation sources, and test beams for HEP detector development. This contribution discusses facility space considerations for the future plasma accelerator research infrastructure of EuPRAXIA. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW025 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW026 | Status of the Horizon 2020 EuPRAXIA Conceptual Design Study | 3638 |
|
||
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782. The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |