Author: Abrams, R.J.
Paper Title Page
THPMP044 Radiation Hard Sensor for Reactor Applications 3545
 
  • R.J. Abrams, M.A. Cummings, R.P. Johnson, T.J. Roberts
    Muons, Inc, Illinois, USA
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  A novel method of measuring temperature of the coolant inside a reactor core is presented. The method, which is both standoff and non-invasive, is based on the interaction between an ultrasonic pulse and a delayed light pulse in the coolant. In the interaction, the light pulse, which is scattered backward by Brillouin scattering, is frequency-shifted. The frequency shift is dependent on the temperature and other parameters of the coolant. The light pulses and the ultrasound pulses are generated and detected outside of the core.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP044  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP048 Mu*STAR: A Modular Accelerator-Driven Subcritical Reactor Design 3555
 
  • R.P. Johnson, R.J. Abrams, M.A. Cummings, J.D. Lobo, M. Popovic, T.J. Roberts
    Muons, Inc, Illinois, USA
 
  Mu*STAR is an accelerator-driven molten-salt sub-critical reactor based on recent superconducting RF technological breakthroughs that allow a highly efficient and powerful proton accelerator to drive a spallation target inside a graphite-moderated, thermal-spectrum reactor. The additional spallation neutrons can be used to overcome the absorption of neutrons by fission products to allow a deeper burn than is possible with critical reactor designs. Simulations have shown that as much as seven times the energy that was extracted from used fuel from light water reactors can be produced by this method before the accelerator demands significant power from the reactor. Once the fuel rods have been converted from oxide ceramics to fluoride salts, in a process that is proliferation resistant (not chemical reprocessing), the fuel can be burned for centuries without increasing its volume while reducing its radio-toxicity. Our 2017 GAIN voucher grant supported studies by ORNL, SRNL, and INL to design and cost a Fuel Processing Plant to convert used nuclear fuel into the molten-salt fuel for Mu*STAR. Based on those studies, it seems possible to build Mu*STAR systems on existing sites where used fuel is stored, convert it to fluoride salts, and use it to provide affordable carbon-free electricity for centuries.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP048  
About • paper received ※ 19 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)