Author: Liu, S.
Paper Title Page
WEPAF047 Status and Commissioning of the Wire Scanner System for the European XFEL 1919
 
  • T. Lensch, S. Liu
    DESY, Hamburg, Germany
 
  The European-XFEL (E-XFEL) is an X-ray Free Electron Laser facility located in Hamburg (Germany). The superconducting accelerator for up to 17.5 GeV electrons will provide photons simultaneously to several user stations. Currently 12 Wire Scanner stations are used to image transverse beam profiles in the high energy sections. These scanners provide a slow scan mode which is currently used to measure beam emittance and beam halo distributions. When operating with long bunch trains (>100 bunches) also fast scans are planned to measure beam sizes in an almost nondestructive manner. This paper describes the current installations and the latest developments of the system at European-XFEL. Furthermore, the commissioning status of the system and first results of beam halo studies will be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF022 Study of Possible Beam Losses After Post-Linac Collimation at European XFEL 4092
 
  • S. Liu, W. Decking
    DESY, Hamburg, Germany
  • F. Wolff-Fabris
    XFEL. EU, Schenefeld, Germany
 
  The European XFEL has been operating with the undulator beam line SASE1 and SASE3 since April 2017 and February 2018, respectively. Despite of the fact that the post-linac collimation has collimated the beam halo to ~20 σ level*, relative high radiation doses have been measured especially in the diagnostic undulator (DU) section**. In order to find the sources of beam losses after post-linac collimation, BDSIM simulations have been performed. In this paper, we will first present the possible losses generated by the wire scanners upstream of the undulators during a scan. The simulation results will be compared with the measured doses along SASE1 and SASE3 undulators. Based on the simulation results, we will estimate the frequency for wire scanner opera-tions. Besides, the simulations with large extension of beam halo hitting the vacuum chamber aperture transition will also be presented. Finally, other possible radiation dose sources will be discussed.
* S. Liu et al., in Proc. of FEL 2017, Santa-Fe, USA, Aug. 2017, paper TUP003.
** F. Wolff-Fabris et al.,IPAC-2018 contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)