Author: Antonsen, T.M.
Paper Title Page
THPAL060 Advanced Modeling of Klystrons by the Tesla-Family of Large-Signal Codes 3785
 
  • I.A. Chernyavskiy, D.K. Abe, B. Levush, A.N. Vlasov
    NRL, Washington, DC, USA
  • T.M. Antonsen
    UMD, College Park, Maryland, USA
  • T.M. Antonsen
    Leidos Corp, Billerica, MA, USA
  • J. Rodgers
    Naval Research Laboratory (NRL), Washington, USA
 
  Funding: US Office of the Naval Research
Klystrons and IOTs are widely used or proposed to be used in accelerators as high-power RF sources. Development and optimization of klystron and IOT designs is aided by the use of different simulation tools, including highly efficient large-signal codes. We present an overview of the advances in the code development and modeling using Naval Research Laboratory (NRL) set of TESLA-family of large-signal codes, suitable for the modeling of single-beam and multiple beam klystrons and IOTs. Original 2D large-signal algorithm of the code TESLA* was developed for the modeling of klystrons based on (relatively) high Q resonators and is applicable to the multiple-beam devices in an approximation of identical beams/beam-tunnels. Parallel extension of TESLA algorithm (code TESLA-MB**) enabled an accurate, quasi-3D modeling of multiple-beam devices with non-identical beams/beam-tunnels. Recently developed more general TESLA-Z algorithm*** is based on the impedance matrix approach and enabled geometry-driven large-signal modeling. Examples of applications of TESLA-family of codes to the modeling of advanced single-beam and multiple-beam klystrons (and IOTs) will be presented.
*A.N. Vlasov, et al,IEEE TPS, v.30(3), 1277-1291, June 2002
**I.A. Chernyavskiy, et al.,IEEE TPS, v.36(3), 670-681, June 2008
***I.A. Chernyavskiy, et al.,IEEE TED, v.64(2), 536-542, Feb 2017
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML055 Scaled Studies on Radio Frequency Sources for Megawatt-Class Ionospheric Heaters 4763
 
  • B.L. Beaudoin, T.M. Antonsen, J.A. Karakkad, A.H. Narayan, G.S. Nusinovich, K.J. Ruisard
    UMD, College Park, Maryland, USA
  • R. Fischer
    Naval Research Laboratory (NRL), Washington, USA
  • S.H. Gold, A. Ting
    NRL, Washington,, USA
 
  Funding: Funding for this project and travel is provided by the Air Force Office of Scientific Research under grant FA95501410019.
The ionosphere plays a prominent role in the performance of critical civilian and military communication systems. The key instrument in Ionospheric Modification (IM) research is a powerful, ground-based, High Frequency (HF) source of electromagnetic waves known as a heater. With a mobile heater, investigators would be able to conduct IM research at different latitudes without building a costly permanent installation. A new highly efficient Megawatt class of Radio Frequency sources is required to reduce the overall power demands on a fully deployable system. Such a source has been described previously*. Results of a scaled experiment, using the electron beam produced by a gridded gun to drive an external lumped element circuit for high efficiency radio frequency generation is presented. The IOT gun produces an electron beam bunched at the driving frequency that is then collected by an external circuit for impedance matching to the load. Results showed that effects such as the internal resistance of the inductor and deflection of beam electrons by the induced RF voltages on the beam collector are important considerations to be included in the design of a practical device.
* B.L. Beaudoin, G.S. Nusinovich, G. Milikh, A. Ting, S. Gold, J.A. Karakkad, A.H. Narayan, D.B. Matthew, D.K. Papadopoulos, T.M. Antonsen Jr., Journal of Elec. Waves and Appl.,31,17,pp.1786, 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)