06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools
Paper Title Page
THXA1 Beam-Based Optimization of Storage Ring Nonlinear Beam Dynamics 3627
 
  • X. Huang, J.A. Safranek
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
This paper will present considerations and algorithms for direct online optimization of the nonlinear beam dynamics of existing and future storage rings. The experimental setup and results from using this approach to improve the dynamic aperture of the SPEAR3 storage ring, using the robust conjugate direction search method and the particle swarm optimization method, will be covered.
 
slides icon Slides THXA1 [1.589 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THXA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB072 Application of Voronoi Diagram to Mask-Based Intercepting Phase-Space Measurements 3872
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • Q. Gao, J.G. Power, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • Q. Gao
    TUB, Beijing, People's Republic of China
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transverse-density diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator facility. We also discuss the application of the Voronoi diagrams to quantify transversely-modulated beams distortion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB092 Orbit and Dispersion Tool at European XFEL Injector 3932
SUSPSIK088   use link to see paper's listing under its alternate paper code  
 
  • N. Ghazaryan
    CANDLE SRI, Yerevan, Armenia
  • M.E. Castro Carballo, W. Decking
    DESY, Hamburg, Germany
 
  Trajectory and electron beam size play an essential role in Free Electron Laser (FEL) obtainment. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion and orbit must constantly be controlled and corrected along the whole lattice. In this paper the principles underlying the orbit and dispersion correction tool, developed at DESY, are described. The results of its testing on European XFEL injector are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB096 Automatized Optimization of Beam Lines Using Evolutionary Algorithms 3941
 
  • S. Appel, V. Chetvertkova, W. Geithner, F. Herfurth, U. Krause, S. Reimann, M. Sapinski, P. Schütt
    GSI, Darmstadt, Germany
  • D. Österle
    KIT, Karlsruhe, Germany
 
  Due to the massive parallel operation modes at GSI accelerators, a lot of accelerator setup and re-adjustment has to be made by operators during a beam time. This is typically done manually using potentiometers and is very time-consuming. With the FAIR project the complexity of the accelerator facility increases further and for efficiency reasons it is recommended to establish a high level of automation for future operation. Modern Accelerator Control Systems allow a fast access to both, accelerator settings and beam diagnostics data. This provides the opportunity to implement algorithms for automated adjustment of e.g. magnet settings to maximize transmission and optimize required beam parameters. The fast-switching magnets in GSI-beamlines are an optimal basis for an automatic exploration of the parameter-space. The optimization of the parameters for the SIS18 multi-turn-injection using a genetic algorithm has already been simulated*. The first results of our automatized online parameter optimization at the CRYRING@ESR injector are presented here.
[*] S. Appel, O. Boine-Frankenheim: Optimization of Multi-turn Injection into a Heavy-Ion Synchrotron using Genetic Algorithms, Proceedings of IPAC2015, Richmond, USA (2015)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB104 Engineering Documentation and Asset Management for the European XFEL Accelerator 3960
 
  • L. Hagge, J.A. Dammann, T.T. Hongisto, J. Kreutzkamp, D. Käfer, B. List, S. Rohwedder, S. Sühl, N. Welle
    DESY, Hamburg, Germany
  • A. Frank
    European XFEL, Schenefeld, Germany
 
  At the European XFEL, extensive technical documentation has been created during design and construction of the accelerator. It is based on a configuration database (the DESY EDMS), which provides an inventory of major accelerator systems. The configuration database registers components and their used materials, tracks component design and fabrication history, and contains engineering documents and drawings, and work and inspection records. Technical documentation can be accessed through intuitive reports and navigational tree structures, representing specific beamline sections or areas of the facility. Access on mobile devices in the accelerator tunnel is supported by component tags with QR codes. A dedicated front-end has been developed for automatically uploading and cross-linking documents to the configuration database, reducing documentation efforts in the project teams. The configuration database now serves as a foundation for upcoming technical operation and maintenance activities. The paper provides an overview of the available engineering documentation and its access methods, and discusses its expected role and benefits in future maintenance processes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB121 The Study of Accelerator Data Archiving and Retrieving Software 4007
SUSPSIK089   use link to see paper's listing under its alternate paper code  
 
  • Y.S. Qiao, G. Lei, Z. Zhao
    IHEP, Beijing, People's Republic of China
 
  This paper presents a novel archiving and retrieving software designed for BEPC-II and other particle accelerators. At BEPC-II, real-time data are stored as index files recorded by traditional EPICS Channel Archiver. Never-theless, index files are not suitable for long-term maintenance and difficult for data analysis. The NoSQL database MongoDB is used for this new system due to aging technologies, so as to promote the data storage reliability, usability, and possible future advanced data analysis. A cross-platform UI (User Interface) has also been developed to make it quicker and easier to access the database. The writing and query performance are tested for this software.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB122 Open XAL Development for Xi'an Proton Application Facility 4010
 
  • Y. Yang, X. Guan, Y. Lei, W. Wang, X.W. Wang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • M.C. Wang, Z.M. Wang, H.Z. Zhang
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
 
  Beam commission tools for Xi'an Proton Application Facility (XiPAF) will be developed based on Open XAL. In this paper, we present preparations made for adopting Open XAL in XiPAF, including a newly designed database schema based on MySQL, modifying db2xal application based on database schema to create optics file automatically. We also add time-dependent nodes in XiPAF's online model to meet the need of energy ramping in synchrotron. A set of high-level applications as well as a new virtual accelerator is under development.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB136 Kameleon - a Behavior-Rich, Non-Memoryless and Time-Aware Generic Simulator 4040
 
  • R.N. Fernandes
    ESS, Lund, Sweden
  • N. Senaud
    CEA/DRF/IRFU, Gif-sur-Yvette, France
 
  At ESS, thousands of devices will be used to control both the machine and end-station instruments. To enable ongoing development when access to these devices is not possible (for whatever the reason), Kameleon was implemented. It is a behavior-rich, non-memoryless and time-aware generic simulator that handles clients through a TCP/IP connection. An instance of this client is an EPICS IOC or a Tango Device Server. Kameleon consumes a user-defined file that describes the commands received from a client and, optionally, the reaction to these through statuses sent back to the client. Key features are: 1) Ubiquitous (runs in disparate platforms such as Windows and Linux). 2) Behavior-rich (predefined behaviors as well as user-defined). 3) Non-memoryless (the state of the simulation can be preserved between events and/or elapsed time). 4) Time-aware (statuses can be sent to the client either event-based or time-based). 5) Flexible (commands and statuses are described in a simple user-defined file - nothing is hard-coded in Kameleon). Kameleon will be used in a myriad of scenarios at ESS such as development of EPICS devices support, IOCs, OPI screens, testing of IOCs and alarm workflows.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB137 New Approach in Developing Open XAL Applications 4043
 
  • C. Rosati, E. Laface
    ESS, Lund, Sweden
 
  Open XAL project is a pure-Java open source development environment used for creating accelerator physics applications, scripts and services. Working with Open XAL requires developing a Java application with a prominent graphical user interface, allowing the final user to interact with the accelerator model, and to graphically view the results such interaction produced. Nevertheless the Open XAL support for specialized components (handling plotting, EPICS connection) and for a document-view application framework, relieving the developer of the burden related with this programming aspects, a lot of boilerplate code has still to be created, making the developer spending more time in UI than in accelerator physics code. In this paper a new approach in developing Open XAL applications is explained. Here the developer is relieved of the UI-related common code code by using software tools, allowing him to visually design the flow of data and events between the various elements of the applications (widgets and models), and automatically generate the application code, where code generation can be customized to use one of the available plugged programming languages (Java, Python, JS, …).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB140 MAX IV Online Linac Model 4047
 
  • L. Isaksson, E. Mansten, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  An online linac model has been developed at MAX IV in order to enable a calculation of the properties of the linac beam based on the actual settings of the magnetic elements. The model is based on the Elegant simulation code and uses the design linac lattice file. A set of Matlab scripts fetch the actual settings of all elements via the Tango control system, pass these values on to Elegant and run the simulation. The model includes an optimization option for yielding desired beta- and alpha-function values at various points along the linac by calculating optimal settings for chosen elements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB145 CERN Accelerators Topology Configuration: Facing the Next Long Shutdown 4066
 
  • S. Bartolome-Jimenez, T.W. Birtwistle, S. Chemli, N. Gilbert, A.-L. Perrot, J. Piar, V. Simetka, B. Vazquez de Prada Planas
    CERN, Geneva, Switzerland
 
  The Configuration and Layout (CL) team at CERN ensures that there is a clear and coherent representation of the status of the CERN underground facilities (about 60 km of equipment) and main accelerator projects at a given point in time. In view of the major equipment changes to be carried out during the extended end of year technical stop (EYETS), the next Long Shutdown (LS2), and to facilitate the associated preparatory work of multiple CERN groups, the CL team has developed an immersive visualisation tool, displaying 360 degree panoramic images of CERN underground facilities. In addition, the CL team is launching a process to manage future layout configurations inside the CERN Layout database in parallel to the current configuration. This paper presents the 360 degree panorama visualisation tool and the parallel configuration process, to view the past, current and future status of the CERN accelerator complex. It highlights their added value for the CERN groups in the preparatory phase for upgrade and consolidation modifications and discusses the potential future improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB146 Investigation of the Remanent Field of the SPS Main Dipoles and Possible Solutions for Machine Operation 4069
 
  • F.M. Velotti, H. Bartosik, J. Bauche, M.C.L. Buzio, K. Cornelis, M.A. Fraser, V. Kain
    CERN, Geneva, Switzerland
 
  The CERN Super Proton Synchrotron (SPS) provides different types of beams at different extraction energies. The main magnets of the SPS are regulated with a current loop, but it has turned out that hysteresis effects from the main dipoles have a significant impact on reproducibility and hence efficiency and availability. Beam and machine parameters were found to depend on the programmed sequence of magnetic cycles - the so-called super cycle - representing the production of the different beams. The scientific program of the SPS requires frequent changes of the supercycle composition and the effect of the main magnet hysteresis has to be understood, modelled and used in accelerator control system. This paper summarises the first main field measurements carried out with the currently available systems during operational conditions as well as measurements of vital machine and beam parameters as a function of the super cycle composition. Finally, ideas will be presented to provide reproducibility by automatically correcting different parameters taking the magnetic history of the main magnets into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB147 Automatic Local Aperture Measurements in the SPS 4073
 
  • V. Kain, H. Bartosik, S. Cettour Cave, K. Cornelis, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The CERN SPS (Super Proton Synchrotron) serves as LHC injector and provides beam for the North Area fixed target experiments. It is equipped with flat vacuum chambers to accommodate the large horizontal beam size required during transition crossing and slow extraction. At low energy, the vertical acceptance becomes critical with high intensity large emittance fixed target beams. Optimizing the vertical available aperture is a key ingredient to optimize transmission and reduce activation around the ring. Aperture measurements are routinely carried out after each shutdown. Global vertical aperture measurements are followed by detailed bump scans at the locations with the loss peaks. During the 2016 run a tool was developed to provide an automated local aperture scan around the entire ring. This allowed to establish detailed reference measurements of the vertical aperture and identify directly the SPS aperture bottlenecks. The methodology applied for the scans will be briefly described in this paper and the analysis discussed. Finally, the 2016 SPS measured vertical aperture will be presented and compared to the results obtained with the previous method.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB147  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB149 Characterization of the THz Radiation-Based Bunch Length Measurement System for the NSRRC Photoinjector 4080
 
  • C.C. Liang, B.Y. Chen, C.H. Chen, M.C. Chou, S. Fann, C.S. Huang, N.Y. Huang, J.-Y. Hwang, W.K. Lau, A.P. Lee, T.Y. Lee, W.Y. Lin, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  A part of high brightness photo-injection (HBI) project at NSRRC is intending to adopt Coherent Transition Radiation (CTR) and Coherent Undulator Radiation (CUR) to generate THz radiation with an ultrashort electron bunch. Such high intensity THz sources allow the THz spectrum to be conducted easily with a THz interferometer and a Golay cell detector. Furthermore, the radiation spectrum carries information of the electron distribution which allows ultrashort electron bunch length measurements. For verifying correct measuring procedure during the CTR and CUR experiments, a conventional THz radiation generated by optical rectification from a ZnTe crystal has been performed. The produced THz pulse was sent into a Michelson interferometer which is designed for the autocorrelation of the intense, sub-mm and mm-wavelength, spatially-coherent radiation pulses. The THz spectrum can be further obtained from the interferogram by the Fourier transform process. In such way, the THz spectrum can be investigated if the result is satisfactory and can be applied on the THz CTR and CUR experiments for the next step.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB151 Online Optimisation Applications at SPS 4086
 
  • T. Pulampong, P. Klysubun, S. Kongtawong, S. Krainara, P. Sudmuang
    SLRI, Nakhon Ratchasima, Thailand
 
  Optimisation of a particle accelerator with very limited diagnostic system is proved to be very challenging and complicated. Theoretical calculation and perfect machine model never guarantee the best solution in the actual machine. In this work, optimisation of injection system from Low energy Beam Transport line (LBT) to Siam Photon Source (SPS) storage ring and reduction of beam coupling employing Robust Conjugate Direction Search (RCDS) algorithm are demonstrated. New record improvement on injection efficiency and better coupling control will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB151  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB153 An Online Multi-Objective Optimisation Package 4092
 
  • I.P.S. Martin, M. Apollonio, R. Bartolini, M.J. Furseman
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini, G.A. Bird
    JAI, Oxford, United Kingdom
  • D.R. Obee
    Durham University, Durham, United Kingdom
 
  The overall performance of an electron storage ring is critically dependant on a large number of variables. It can be characterised in many ways, such as by lifetime, injection efficiency, beam stability and so on. It is frequently the case however that improving one parameter comes at the cost of harming another. Equally, given the large number of variables involved in optimising the ring performance, the true, global optimum solution may be difficult to identify using simple parameter scans. In order to address this problem, a flexible optimisation tool has been developed. This tool is capable of optimising several parameters at once and can cope with an arbitrary number of variables (individually or in families). The tool is designed to be robust to measurement noise, and has been applied to a number of different optimisation problems. This paper presents an overview of the package, as well as the results of the first tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB153  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK064 Beam Lifetime Analysis of HLS-II Storage Ring 4242
 
  • K. Xuan, C. Li, J.Y. Li, G. Liu, G. Liu, J.G. Wang, L. Wang, W. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Beam lifetime is one of the important parameters of electron storage rings, which can describe the particle loss rate quantitatively and is restrict by quantum lifetime, beam-gas scattering and Touschek effect. The upgrade project of Hefei light source, named HLSII, has greatly improved the performance of the light source. The beam lifetime has been maintained at more than 5 hours. In this paper, a combined analysis method is derived by the analysis of the beam lifetime, and the method is applied to the HLSII storage ring. The experimental results show that this method is simple and reliable for the analysis of the Touschek lifetime and beam-gas scattering lifetime.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA093 Open XAL Status Report 2017 4676
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    SLAC, Menlo Park, California, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, B.T. Folsom, E. Laface, Y.I. Levinsen, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
  • J.E. Muller
    CERN, Geneva, Switzerland
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010 The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, interaction with control system and software organization. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA095 Storage Ring Injection Kickers Alignment Optimization in NSLS-II 4683
 
  • G.M. Wang, W.X. Cheng, J. Choi, T.V. Shaftan, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. The SR is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets with independent amplitude and timing control. Ideally, fast kickers formed a local bump, which is transparent to stored beam during top off injection. Due to mismatch of kicker voltage, timing or waveform, there is residual betatron oscillation and impact normal operation. This paper will present the injection kicker waveform measurement with beam, local and global alignment optimization to in improve top off injection transition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)