
THE STUDY OF ACCELERATOR DATA ARCHIVING AND RETRIEVING

SOFTWARE

Yusi Qiao1, Ge Lei, Zhuo Zhao, Institute of High Energy Physics, Beijing, China
1also at University of Chinese Academy of Sciences, Beijing, China

Abstract

This paper presents a novel archiving and retrieving

software designed for BEPC-II and other particle acceler-

ators. At BEPC-II, real-time data are stored as index files

recorded by traditional EPICS Channel Archiver. Never-

theless, index files are not suitable for long-term mainte-

nance and difficult for data analysis. The NoSQL database

MongoDB is used for this new system due to aging tech-

nologies, so as to promote the data storage reliability,

usability, and possible future advanced data analysis. A

cross-platform UI (User Interface) has also been devel-

oped to make it quicker and easier to access the database.

The writing and query performance are tested for this

software.

INTRODUCTION

The Beijing Electron-Positron Collider II (BEPC-II)

consists of various equipment. Capturing live BEPC-II

data is important for its status monitoring and post mor-

tem analysis. These signals provide status information for

power supplies, RF devices, vacuum, beam diagnostics,

timing system, etc. which should be monitored and ar-

chived accurately and reliably. At BEPC-II, the control

system software is based on the Experimental Physics and

Industrial Control System (EPICS). EPICS provides a set

of Open Source software tools, libraries and applications.

It is widely used to create distributed soft real-time con-

trol systems for scientific instruments [1]. One of the

EPICS tools, Channel Archiver, has been used in the

present BEPC-II data archiving system, but it has issues

of capability, extensibility, data migration and so on. To

deal with the problem, we proposed a novel archive sys-

tem using MongoDB, a document-oriented NoSQL data-

base. The new database is required to have high availabil-

ity, high performance, and high flexibility of storage ex-

pansion.

ARCHIVING TOOLS ALTERNATIVES

For comparison purpose, we did some research on sev-

eral mainstream archiving tools of particle accelerators.

 Channel Archiver records data from several channels,

each producing samples at a different rate. The data is

stored in binary index and data files. The designing goal

of Channel Archiver is I/O speed, and the retrieving tool

is easy to utilize [2].

With matured relational database (RDB) technologies,

such as MySQL, Oracle and PostgreSQL, many new

archiving tools are developed and adopted based on RDB.

These tools significantly improve data access and retriev-

al performance comparing with the original indexed file

based Channel Archiver. However, relational database is

not enough in availability, performance, and flexibility for

increasing data volume, which becomes a great limitation

when facing big data and various data structure nowadays.

NoSQL databases are developed with the challenge of

mass data storage and processing, as well as high perfor-

mance, especially in large scale and high-concurrency

applications. MongoDB is a high performance and very

scalable document-oriented database that stores data in a

BSON format, a dynamic schema document structured

like JSON [3]. With powerful query language and high-

speed access to massive data, MongoDB is used as the

underlying storage database of our system.

ARCHITECTURE

The system has two main subsystems, the archiving

tool and retrieving tool, as shown in Fig. 1. PV (Process

Variable) is an important data unit of EPICS communica-

tion protocols, which usually represents a signal. Now,

about 8000 PVs are being collected for monitoring and

controlling of BEPC-II equipment. To establish a data

communication channel, engine model broadcasts across

the network for the targeted PV, and the IOC (In-

put/Output Controller) holding the PV will response to the

request and then establish a communication channel,

which allows reading values from the PV. The values and

other parameters received from read threads will be stored

in a buffer temporarily and then bulk-write to a Mon-

goDB database. With an appropriate data structure and

indexes, the data can be stored efficiently and located

quickly through retrieving model, and the users can dis-

play the data using a convenient and efficient UI.

Figure 1: Architecture of system.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB121

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

ISBN 978-3-95450-182-3
4007 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

DATA ARCHIVING

The configuration file is in XML format, including ar-

chive engine name, which is also the database name in

MongoDB, and targeted PV names with corresponding

sampling rate. There are several read threads and one

write thread. The read threads read the data via periodic

scanning the PV, and send it to the buffer. Two buffers are

applied for this archive tool, which operate alternatively.

When a buffer reaches a certain volume, the write flag

calls the write thread and the other buffer would be ready

to store the next coming data.

By applying the bulk-write mechanism, the writing per-

formance has been improved. For real-time data archiving,

PV scanning rates are various but no faster than 1 Hz. In

our test, we run two IOCs which contain 1600 PVs for

archiving, with scan periods among 1 s, 2 s, 5 s and 10 s.

The archive server deploying MongoDB is built with an

HP workstation, a quad-core, eight threads, clocked at 3.4

GHz Intel CPU is equipped, along with 8GB memory and

a 500 GB Western Digital disk. The maximum data

transmission speed is 126 MB/s.

The data must be transformed into a BSON object to

store in MongoDB. On average, a BSON document con-

sumes about 92 bytes per sample to store the value,

timestamp, status and severity. So based on existing de-

vices, 6×104 to 6×104 documents were inserted per sec-

ond, and the I/O throughput of archive engine is 6MB/s -

9MB/s. Because of the high speed processing and reason-

able compression rate, we choose Snappy as compression

and decompression library [3]. Each database of the ar-

chiving system consists of two kinds of collection: the

collection named colsum for recording collections’ names
and their time spans and the collection contains raw data.

This structure makes the data easy to classify and query.

Once a query is submitted to database, the system first

finds in the colsum collection according to the engine

name, PV name and time span, and then find the request-

ed data from the collection contains raw data. The query

only loads the value and timestamp because in most cases

users only use the data to plot.

DATA RETRIEVING

Indexes offer enhanced performance for read operations.

These are useful when documents are larger than the

amount of RAM available [4]. Indexes are defined when

the collections are created. Queries that return results

containing only indexed fields are called covered queries.

These results can be returned without reading through the

source documents. Based on the architecture and data

structure, we designed appropriate indexes to make sure

that only covered queries are called for better perfor-

mance. While indexes will optimize system performance

and scalability, they incur associated overhead in write

operations, disk usage, and memory consumption to a

certain degree. For now, we mostly focus on the retrieval

performance.

The Table1 shows the data retrieval performance. The

response time (R Time) represents the time a query re-

quest consume. The process time (P Time) represents the

time from the find button clicked till the data is ready to

plot, which includes converting EPICS Time stamp to

local time. Since the mostly queried time span is less than

a day [5], we did a performance test retrieving a day’s
worth of 1 Hz double data from 15 days of data and 30

days of data. That means finding 86.4 thousand samples

from 1.296 million samples and 2.592 million samples.

Table 1: Query Performance

Condition
15d 30d

R Time P Time R Time P Time

No Index 0.432s 1.289s 0.808s 1.749s

Cover Index 0.047s 0.866s 0.056s 0.896s

USER INTERFACE

A cross-platform GUI (Graphics User Interface) based

on Qt has been developed for users. Users can access the

database easily on Linux or Windows system. It is driven

by C++, and the plot elements are based on Qcustomplot

library. Figure 2 shows four major parts of the GUI. Part I is

a connection dialog for server database. It can fulfil the

connection table automatically via logging the past suc-

cessful connection information. Part II is a PV selection

area. It helps users to find the PV name quicker and easier

by providing auto-filter function. It gives a set of suggest-

ed words that contain the input word. Comparing with the

usual auto-complete, users do not need to know the ini-

tials or the first accurate part of the PV name. It makes

user easier to find a specific PV because the PVs are often

named regularly or with meaningful tags which are easy

to remember.

Part III is for determining the time span. User can enter

time or just click in the calendar. Part IV provides a plot

area that shows the extract PV data with corresponding

readable time stamp in line chart with scatter. User de-

fined legend and title, three zoom modes using the mouse

wheel are also provided. The plot and scatters can be

exported, dragged or selected to see the details of each

point. One more useful function is to allow users to ex-

port queried data in to a TXT file. This is helpful for per-

forming off-line analysis.

THPAB121 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
4008Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

Figure 2: Main parts of retrieving user interface.

CONCLUSION

A novel archiving and retrieving system has been de-

veloped using MongoDB, a NoSQL document-oriented

database. The system provides a new archive engine to

archive EPICS records to MongoDB and a user-friendly

interface to query the data. The simple UI allows users to

plot the stored data or export for off-line analysis. On the

basis of the existing laboratory test results, the system has

been deployed and being tested in the BEPC-II runtime

environment at present. A web-based query interface is

also being developed as a future plan.

REFERENCES

[1] EPICS Home Page, http://www.aps.anl.gov/epics/.

[2] Channel Archiver, Aug. 2006, pp. 3-14;
http://icsweb.sns.ornl.gov/kademir/archiver/m
anual.pdf

[3] MongoDB Manual,

https://docs.mongodb.com/manual/.

[4] Truică C O, Boicea A and Trifan I. CRUD operations in

MongoDB., in Proc. 2013 international Conference on Ad-

vanced Computer Science and Electronics Information
(ICACSEI 2013), Beijing, China, July 2013, paper AC1210,

pp.347-350.

[5] G. Shen, Y. Hu, Marty Kraimer, Shroff Kunal and Dejan

Dezman., “NSLS II Middlelayer Services”, in Proc. 13th

Int. Conf. on Accelerator and Large Experimental Physics

Control Systems (ICALEPCS’11), San Francisco, US, Oct.

2013, paper MOPPC155, pp. 467-470.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB121

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

ISBN 978-3-95450-182-3
4009 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

